
Mathematical Logic

Hannes Leitgeb

October 2006

These lecture notes follow closely:

Ebbinghaus, H.D., Flum, J., Thomas, W., Mathematical Logic, New York:
Springer, 1984.

1

Contents

1 Introduction 4

2 First-Order Languages 9
2.1 Preliminary Remarks on Formal Languages 9
2.2 Vocabulary of First-Order Languages 11
2.3 Terms and Formulas of First-Order Languages 14
2.4 Induction over Terms and Formulas 19
2.5 Problem Set 1 . 22

3 Semantics of First-Order Languages 24
3.1 Models, Variable Assignments, and Semantic Values 24
3.2 Problem Set 2 . 32
3.3 Some Important Semantic Concepts 34
3.4 Problem Set 3 . 39
3.5 Substitution and the Substitution Lemma 41
3.6 Problem Set 4 . 49

4 A Sequent Calculus for First-Order Predicate Logic 50
4.1 Preliminary Remarks on the Sequent Calculus 50
4.2 Basic Rules . 53
4.3 Rules for Propositional Connectives 54
4.4 Rules for Quantifiers . 59
4.5 Rules for Equality . 62
4.6 The Soundness Theorem for the Sequent Calculus 65
4.7 Some Important Proof-Theoretic Concepts 66
4.8 Problem Set 5 . 71

5 The Completeness Theorem and Its Consequences 73
5.1 The Satisfiability of Maximally Consistent Sets of Formulas

with Instances . 74
5.2 Extending Consistent Sets of Formulas to Maximally Consis-

tent Sets of Formulas with Instances 82
5.3 Consequences and Applications 89
5.4 Problem Set 6 . 93

2

6 The Incompleteness Theorems for Arithmetic 94
6.1 Preliminary Remarks . 94
6.2 Formalising “Computer” in Terms of Register Machine 96
6.3 Register-Decidability, Register-Enumerability, Register-Computability100
6.4 The Relationship Between Register-Enumerability and Register-

Decidability . 106
6.5 First-Order Theories and Axiomatizability 108
6.6 Arithmetical Representability and the Incompleteness Theorems111

7 Solutions to the Problem Sets 117
7.1 Solutions to Problem Set 1 . 117
7.2 Solutions to Problem Set 2 . 122
7.3 Solutions to Problem Set 3 . 129
7.4 Solutions to Problem Set 4 . 134
7.5 Solutions to Problem Set 5 . 138
7.6 Solutions to Problem Set 6 . 143

3

1 Introduction

What is mathematical logic?

Let us consider a simple theorem in group theory:

A group is a triple (G, ◦, e) with

• G is a set, G 6= ∅

• ◦ : G×G→ G

• e ∈ G

such that the following axioms are satisfied:

For all x, y, z : x ◦ (y ◦ z) = (x ◦ y) ◦ z (Associative Law)(G1)

For all x : x ◦ e = x (Right Neutral Element)(G2)

For all x there is a y such that x ◦ y = e (Right Inverse Element)(G3)

Example 1

• (R,+, 0) is a group.

• (R, ·, 1) is not a group (there is no y such that 0 · y = 1).

We can prove the following theorem:

Theorem 1 Let (G, ◦, e) be an arbitrary group:
For every group element in G there is a left inverse element, i.e.,
for all x there is a y such that y ◦ x = e.

Proof.
Let x be an arbitrary member of G:
By (G3), for this x there is a y ∈ G such that: x ◦ y = e.

4

By (G3), for this y there is a z ∈ G such that: y ◦ z = e.

Therefore:

y ◦ x = (y ◦ x) ◦ e (G2)

= (y ◦ x)︸ ︷︷ ︸
(a◦b)

◦ (y ◦ z)︸ ︷︷ ︸
c

(y ◦ z = e)

= y︸︷︷︸
a

◦ (x ◦ (y ◦ z))︸ ︷︷ ︸
(b◦c)

(G1)

= y ◦ ((x ◦ y) ◦ z) (G1)

= y ◦ (e ◦ z)) (x ◦ y = e)

= (y ◦ e) ◦ z (G1)

= y ◦ z (G2)

= e (y ◦ z = e)

Reconsidering the above we recognize the following three “ingredients”:

1. a theorem (which is nothing but a sentence in a formalised language)

2. the claim that this theorem is a logical consequence of other sentences
(here: the group axioms)

3. the proof of the theorem

↪→ Mathematical logic is the subdiscipline of mathematics which deals with
the mathematical properties of formal languages, logical consequence, and
proofs.

Here is another example:

An equivalence structure is a pair (A,≈) where

• A is a set, A 6= ∅

• ≈ ⊆ A× A

5

such that the following axioms are satisfied:

For all x : x ≈ x (Reflexivity)(A1)

For all x, y : if x ≈ y then y ≈ x (Symmetry)(A2)

For all x, y, z : if x ≈ y and y ≈ z then x ≈ z (Transitivity)(A3)

Example 2

• If = is the equality relation on a non-empty set A, then (A,=) is an
equivalence structure.

• For m,n ∈ Z let m ≡ n iff there is a k ∈ Z s.t. m− n = 5k.
Then (Z,≡) is an equivalence structure.

Consider the following simple theorem on equivalence structures:

Theorem 2 Let (A,≈) be an arbitrary equivalence structure:
If two elements of A are equivalent to some common element of A, then they
are equivalent to exactly the same elements of A, i.e.,
for all x, y: if there is some u such that x ≈ u, y ≈ u, then for all z:

x ≈ z iff y ≈ z

Proof.
Let x, y be arbitrary members of A.
Assume that there is a u such that x ≈ u, y ≈ u.
It follows:

u ≈ x (A2, x ≈ u)

u ≈ y (A2, y ≈ u)

y ≈ x (A3, y ≈ u, u ≈ x)

x ≈ y (A2, y ≈ x)

Now let z be an arbitrary member of A:
If x ≈ z, then y ≈ z because of (A3, y ≈ x, x ≈ z).
If y ≈ z, then x ≈ z because of (A3, x ≈ y, y ≈ z).

We recognize the same three “ingredients” as before:

6

1. a theorem

2. the claim that this theorem is a logical consequence of other sentences
(in this case: the axioms of equivalence structures)

3. the proof of the theorem

More generally: we deal with

1. a set Φ of sentences (“axioms”), a sentence ϕ (“theorem”)

2. the claim that ϕ follows logically from Φ

3. the proof of ϕ on the basis of Φ

In mathematical logic this is made precise:

1. sentences: members of so-called first-order languages

2. consequence: a first-order sentences ϕ follows logically from a set Φ of
first-order sentences iff every model that satisfies all sentences in Φ also
satisfies ϕ

3. proofs: sequences of first-order sentences which can be generated effec-
tively on the basis of a particular set of formal rules

We will define ‘first-order language’, ‘model’, ‘proof’,. . . and prove theorems
about first-order languages, models, and proofs. E.g., we will show:

• If ϕ is derivable from Φ on the basis of the rules in 3, then ϕ follows
logically from Φ in the sense of 2 (“Soundness Theorem”).

• If ϕ follows logically from Φ in the sense of 2, then ϕ is derivable from
Φ on the basis of the rules in 3 (“Completeness Theorem”).

Historical development:

Aristotle (384–322 BC)
G. Frege (AD 1848–1925)
K. Gödel (AD 1906–1978)
A. Tarski (AD 1902–1983)

7

G. Gentzen (AD 1909–1945)
A. Turing (AD 1912–1954)
...

Subdisciplines of mathematical logic:

• Model theory

• Proof theory

• Set theory

• Computability theory (Recursion theory)

Logic is at the intersection of mathematics, computer science, and philosophy.

References to (good) introductory text books:

• Ebbinghaus, H.D., Flum, J., Thomas, W., Mathematical Logic, New
York: Springer, 1984.

• Enderton, H.B., A Mathematical Introduction to Logic, San Diego: Har-
court, 2001.

• Shoenfield, J.R., Mathematical Logic, Natick: A K Peters, 2000.

In particular, we will make use of Ebbinghaus, Flum, Thomas.

Internet: check out http://world.logic.at/

8

2 First-Order Languages

2.1 Preliminary Remarks on Formal Languages

Alphabet : non-empty set A the members of which are called ‘symbols’.

Example 3

• A1 = {l1, . . . , l26}, where l1 = ‘a’, . . . , l26 = ‘z’
(if denoted less precisely but more simply: A1 = {a, b, . . . , z})

• A2 = {n0, n1, . . . , n9}, where n0 = ‘0’, . . . , n9 = ‘9’

• A3 = N

• A4 = R

We are going to restrict ourselves to countable alphabets (i.e., finite or count-
ably infinite ones); so e.g. A4 will be excluded.

We recall:

X is countable iff
X = {x1, x2, x3, . . .} iff
there is a function f : N→ X, such that f is surjective (onto) iff
there is a function f : X → N, such that f is injective (one-to-one).

(Note that for finite sets X it holds that for some n:
xn+1 = xn, xn+2 = xn, . . .)

String over A: finite linear sequence ζ1, ζ2, . . . , ζn︸ ︷︷ ︸
(ζ1,...,ζn)

of members of A

(i.e., ζi ∈ A for 1 ≤ i ≤ n).

Example 4

• abudabi, goedel: strings over A1

• 4711, 007: strings over A2

9

• 123: string over A3

↪→ But which string?

123 ≈ (1, 2, 3) or 123 ≈ (12, 3) or 123 ≈ (1, 23) or 123 ≈ (123)?

We have to take care to choose alphabets and notations for strings in a way
such that every string can be reconstructed uniquely as a sequence of mem-
bers of the alphabet.

Let A∗ be the set of strings over the alphabet A.

Here is a simple lemma on the cardinality of A∗:

Lemma 1 If A is countable, then A∗ is countable as well; indeed A∗ is
countably infinite.

Proof. Recall the fundamental theorem of elementary number theory:
Every natural number n > 1 can be represented uniquely as a product of
prime numbers p1, . . . , pk with p1 < . . . < pk, such that

n = pi11 · . . . · p
ik
k , where ij > 0 for 1 ≤ j ≤ k

E.g.: 14 = 2 · 7 = 21 · 71, 120 = 2 · 2 · 2 · 3 · 5 = 23 · 31 · 51

Now let q1 be the first prime number (i.e., 2), q2 be the second prime number
(i.e., 3),. . ., qn the n-th prime number,. . .
Since A is countable by assumption, either of the following is the case:

• A is finite: A = {a1, . . . , an} with pairwise distinct ai

• A is (countably) infinite: A = {a1, a2, a3, . . .} with pairwise distinct ai

Let
f : A∗ → N

ai1ai2 . . . aik 7→ qi11 · qi22 · . . . · q
ik
k

E.g.: f(a3a2a2) = 23 · 32 · 52 = 1800
(coding functions of such a type are often referred to as ‘Gödelisations’).

Claim: f is injective (hence this “coding” is unique).

10

For assume f(ai1ai2 . . . aik)︸ ︷︷ ︸ = f(aj1aj2 . . . ajl)︸ ︷︷ ︸
qi11 · qi22 · . . . · q

ik
k = qj11 · q

j2
2 · . . . · q

jl
l

Since the prime factor representation of natural numbers is unique, it follows:
⇒ k = l
⇒ i1 = j1, . . . , ik = jl
⇒ ai1 . . . aik = aj1 . . . ajlX

=⇒ according to what we said before about countability: A∗ is countable.

Indeed, A∗ is countably infinite: a1, a1a1, a1a1a1, . . . ∈ A∗.

2.2 Vocabulary of First-Order Languages

Now we consider the alphabets of formal languages of a particular kind:
the vocabularies of first-order languages.

Take our axioms (G3) and (A3) from section 1 as examples:

• (G3) For all x there is a y such that x ◦ y = e

• (A3) For all x, y, z: if x ≈ y and y ≈ z then x ≈ z

In these sentences and in other ones about groups and equivalence structures
we find symbols of the following types:

Propositional connectives:

“and”: ∧
“if-then”: →
“not”: ¬
“or”: ∨
“iff” (“if and only if”): ↔

Quantifiers:

“for all”: ∀
“there is’: ∃

11

Variables:

“x”,“y”,“z”: v0, v1, v2, . . .

Equality sign:

“=”: ≡ (binary predicate)

Predicates:

“≈”: P 2
0 (binary predicate)

Function signs:

“◦”: f 2
0 (binary function sign)

Constants:

“e”: c0

Parentheses are used as auxiliary symbols.

More generally:

Definition 1 The vocabulary or alphabet of a first-order language contains
the following symbols (and only the following symbols):

1. ¬,∧,∨,→,↔

2. ∀,∃

3. v0, v1, v2, . . .

4. ≡

5. for every n ≥ 1 a (possibly empty) set of n-ary predicates P n
i

(i = 0, 1, 2 . . .)

6. for every n ≥ 1 a (possibly empty) set of n-ary function signs fni
(i = 0, 1, 2 . . .)

7. a (possibly empty) set of constants ci (i = 0, 1, 2, . . .)

and parentheses as auxiliary symbols.

12

Note:

• A = {(1), (2), (3), (4)} is fixed: these symbols are contained in every
first-order language.

• S = {(5), (6), (7)} is optional: the choice of S determines the specific
character of a first-order language.

• AS = A ∪ S is the actual alphabet of the first-order language that is
determined by S.

Example 5

• SGr = { ◦︸︷︷︸
f2
0

, e︸︷︷︸
c0

} determines the first-order language of group theory.

• SEqu = { ≈︸︷︷︸
P 2

0

} determines the first-order language of equivalence struc-

tures.

In future we will use the following conventions for “metavariables”:
“P”,“Q”,“R” (with or without indices) denote predicates.
“f”,“g”,“h” (with or without indices) denote function signs.
“c” (with or without indices) denote constants.
“x”,“y”,“z” (with or without indices) denote variables.

Remark 1 Let S be the specific symbol set of a first-order language
(such that AS = A ∪ S is the alphabet of that language):

AS is countable (in fact countably infinite because of v0, v1, . . . ∈ A)
By lemma 1, A∗S is also countably infinite.

13

2.3 Terms and Formulas of First-Order Languages

Compare natural languages:

‘This is lame and extremely boring’ is well-formed (“grammatical”).
‘and extremely this lame is boring’ is not well-formed.

Accordingly, we will now characterise particular strings over some alphabet
AS of a first-order language as being well-formed. E.g.:

e∧)→ ∀: not well-formed, although it is a member of A∗SGr
.

e ◦ v1 ≡ v2: well-formed and a member of A∗SGr
.

We are going to build up well-formed expressions in a step-by-step manner;
e.g.:

e ◦ v1︸ ︷︷ ︸
term

≡ v2︸︷︷︸
term︸ ︷︷ ︸

formula

∈ A∗SGr

Definition 2 Let S be the specific symbol set of a first-order language.
S-terms are precisely those strings over AS that can be generated according
to the following rules:

(T1) Every variable is an S-term.

(T2) Every constant in S is an S-term.

(T3) If t1, . . . , tn are S-terms and f is an n-ary function sign in S,
then f (t1, . . . , tn) is an S-term.

Abbreviated:

(T1) x

(T2) c

(T3)
t1,...,tn

f(t1,...,tn)
}premises
}conclusion

14

This means:

t ∈ A∗S is an S-Term iff there is a sequence u1, . . . , uk of elements of A∗S ,
such that

uk = t

and for all ui with 1 ≤ i ≤ k it is the case that:

• ui is a variable or

• ui is a constant in S or

• ui = f (t1, . . . , tn) and t1, . . . , tn ∈ {u1, . . . , ui−1}.

We denote the set of S-terms by: TS .

Example 6 Let S = {f, g, c} where f, g are binary function signs, c is a
constant.
It follows that g

(
f(c, v0), c

)
is an S-term:

c (T2)(1)

v0 (T1)(2)

f(c, v0) (T3, with 1., 2.)(3)

g
(
f(c, v0), c

)
(T3, with 3., 1.)(4)

Remark 2

• In order to denote arbitrary terms we use: “t”
(with or without an index).

• Traditionally, one writes functions signs between terms:
e.g. t1 + t2 := +(t1, t2), t1 ◦ t2 := ◦(t1, t2), and so forth.

Definition 3 Let S be the specific symbol set of a first-order language.
S-formulas are precisely those strings over AS that can be generated according
to the following rules:

15

(F1) ≡(t1,t2) (for S-terms t1, t2)

(F2) P (t1,...,tn) (for S-terms t1, . . . , tn, for n-ary P ∈ S)

(Formulas which can be generated solely on basis of (F1) and (F2) are called
atomic.)

(F3)
ϕ

¬ϕ︸︷︷︸
negation

(F4)
ϕ, ψ

(ϕ ∨ ψ)︸ ︷︷ ︸
disjunction

ϕ, ψ

(ϕ ∧ ψ)︸ ︷︷ ︸
conjunction

ϕ, ψ

(ϕ→ ψ)︸ ︷︷ ︸
implication

ϕ, ψ

(ϕ↔ ψ)︸ ︷︷ ︸
equivalence

(F5)
ϕ

∀xϕ︸ ︷︷ ︸
universally quantified

ϕ

∃xϕ︸ ︷︷ ︸
existentially quantified

(for arbitrary variables x)

This means: . . . (analogous to the case of terms).

We denote the set of S-formulas by: FS .

Example 7 Let S = {R} where R is a binary predicate.

It follows that
((
R(v0, v1) ∧R(v1, v2)

)
→ R(v0, v2)

)
is an S-term:

R(v0, v1) (F2)(1)

R(v1, v2) (F2)(2) (
R(v0, v1) ∧R(v1, v2)

)
(F4, with 1., 2.)(3)

R(v0, v2) (F2)(4) ((
R(v0, v1) ∧R(v1, v2)

)
→ R(v0, v2)

)
(F4, with 3., 4.)(5)

Remark 3

• In order to denote arbitrary formulas we use: “ϕ”,“ψ”,“ρ”,. . .
(with or without an index).

16

• Often one writes predicates between terms:
e.g. t1 ≡ t2 := ≡ (t1, t2), t1 ≈ t2 := ≈ (t1, t2), and so forth.

• “(” , “)” are needed in (F4) to guarantee unique readability:
otherwise ϕ ∧ ψ ∨ ρ could either be (ϕ ∧ ψ) ∨ ρ or be ϕ ∧ (ψ ∨ ρ) !?

Lemma 2 For all symbol sets S that specify first-order languages:
TS ,FS are countably infinite.

Proof. We have already seen that A∗S is countable.
Since TS ,FS ⊆ A∗S , it follows that TS ,FS are countable, too.
v0, v1, v2, . . . ∈ TS , thus TS is countably infinite.
v0 ≡ v0, v1 ≡ v1, v2 ≡ v2, . . . ∈ FS , therefore FS is countably infinite.

Remark 4 Our definition of formulas is quite “liberal”: if S is chosen
accordingly, then

• ∀x (P (y)→ Q(y)) ∈ FS , although x does not occur in (P (y)→ Q(y))

• ∀x (P (y)→ Q(y)) ∈ FS , although y occurs freely in (P (y)→ Q(y)),
i.e., it occurs not in the range of (“bound by”) ∀y or ∃y

• ∃x(x ≡ x ∧ x ≡ x) ∈ FS , although this is obviously redundant

• ∃x∃xP (x) ∈ FS , although the x in ∃xP (x) is bound and therefore the
first occurrence of ∃x is useless.

But being tolerant in these ways does not do any harm and makes things
much simpler. So let’s not care!

At some points we will need to sort out those variables which occur freely in
a formula, i.e., which occur not bound by any quantifier:

Definition 4 Let ϕ ∈ FS (for arbitrary symbol set S):
free(ϕ), i.e., the set of variables which occur freely in ϕ, can be defined
recursively as follows:

• free(t1 ≡ t2) := var(t1) ∪ var(t2)

(let var(t) be the set of variables in t)

17

• free (P (t1, . . . , tn) := var(t1) ∪ . . . ∪ var(tn)

• free(¬ϕ) := free(ϕ)

• free ((ϕ ∧ ψ)) := free(ϕ) ∪ free(ψ)

(analogously for ∨,→,↔)

• free(∀xϕ) := free(ϕ)\{x}
(analogously for ∃).

Example 8

free (∀x (P (y)→ Q(y))) = {y}

free (∃xP (x)) = ∅

free ((∃xP (x) ∧ P (x))) = {x}

We see that according to our definition, free(ϕ) is the set of variables that
occur freely at some place within ϕ.

A formula ϕ without free variables, i.e., for which free(ϕ) = ∅, is called a
sentence.

Remark 5 For simplicity, we will sometimes omit parentheses:

• Outer parentheses: e.g., ϕ ∧ ψ := (ϕ ∧ ψ)

• ¬ binds more strongly than ∧,∨, i.e.:
¬ϕ ∧ ψ := (¬ϕ ∧ ψ) [6= ¬(ϕ ∧ ψ)]

• ∧,∨ bind more strongly than →,↔, i.e.:
ϕ ∧ ψ → ϕ ∨ ψ := (ϕ ∧ ψ)→ (ϕ ∨ ψ)

[6= (ϕ ∧ (ψ → ϕ)) ∨ ψ]

• in the case of multiple conjunctions or disjunctions:
ϕ ∧ ψ ∧ ρ = (ϕ ∧ ψ) ∧ ρ
ϕ ∨ ψ ∨ ρ = (ϕ ∨ ψ) ∨ ρ

18

2.4 Induction over Terms and Formulas

Throughout this course we will use the following method of proof over and
over again:

1. We show: All terms/formulas ζ with
ζ

have the property P.

2. We show: Assume terms/formulas ζ1, . . . , ζn have the property P.
Then all terms/formulas ζ with ζ1,...,ζn

ζ
have the property P.

1. and 2. imply: All terms/formulas ζ have the property P.

Remark 6 This is simply a version of proof by complete induction over
natural numbers. One actually shows by complete induction over n:

For all n ∈ N: For all ζ:
if ζ is derivable in the term-/formula-calculus in n steps,
then ζ has the property P.

Example 9
Claim: All terms in TS contain as many opening parentheses as they contain
closing parantheses; i.e.: all terms ζ have the property of

containing as many opening parentheses as closing parentheses︸ ︷︷ ︸
P

Proof.
Induction basis:
Variables have the property P (since they do not contain parentheses at all).X
Constants have the property P (they do not contain parentheses at all).X

Inductive assumption:
Assume terms t1, . . . , tn have the property P.
So t1 contains as many opening parentheses as closing parentheses, t2 contains
as many opening parentheses as closing parentheses,. . . But then also

f(t1, . . . , tn)

does so (where f is an arbitrary function sign in S).

19

In short: f(t1, . . . , tn︸ ︷︷ ︸
IA

)

︸ ︷︷ ︸
also has property P

X =⇒ by induction, we are done.

(Analogously for formulas!)

Now let us consider a slightly more complex application of induction over
terms:

We call X ⊆ A∗S closed under the rules of the term calculus (for a given
symbol set S) iff

1. all variables are contained in X,

2. all constants in S are contained in X,

3. if t1, . . . , tn are in X, then f(t1, . . . , tn) is in X
(where f is an arbitrary function sign in S).

Example 10

• A∗S is closed under the rules of the term calculus.

• TS is closed under the rules of the term calculus.

Lemma 3 TS is the intersection of all subsets of A∗S that are closed under
the rules of the term calculus, i.e.,

TS =
⋂

X ⊆ A∗S,
Xclosed

X

(and thus TS is the least subset of A∗S that is closed under the rules of the
term calculus).

Proof.

1. If X is closed under the rules of the term calculus, then TS ⊆ X:

20

Since: all t ∈ TS are contained in X︸ ︷︷ ︸
property P

, by induction:

(a) variables and constants are contained in X X
(b) assume t1, . . . , tn ∈ TS are contained in X:
=⇒ also f(t1, . . . , tn) is a member of X X
(both by assumption that X is closed under the term rules).

2. Therefore: TS ⊆
⋂
X

X closed

3. TS is itself closed under the rules of the term calculus.

Since: (a) variables and constants are in TS X
(b) assume t1, . . . , tn are in TS
[let us do this very precisely for once. . .]
=⇒ there are term derivations of the form

u1
1, . . . , u

1
k1

with u1
k1

= t1
u2

1, . . . , u
2
k2

with u2
k2

= t2
...

un1 , . . . , u
n
kn

with unkn = tn
But then
u1

1, . . . , u
1
k1︸︷︷︸
t1

, u2
1, . . . , u

2
k2︸︷︷︸
t2

, . . . , un1 , . . . , u
n
kn︸︷︷︸
tn

, f(t1, . . . , tn)

is a derivation of f(t1, . . . , tn) in the term calculus
(where the last derivation step is an application of (T3))
=⇒ f(t1, . . . , tn) is in TSX

4.
⋂
X ⊆ TS since 3 implies that TS is itself one of the closed sets X.

X closed

From 2 and 4 follows: TS =
⋂
X

X closed

An analogous statement can be proved for FS and the formula calculus.

21

2.5 Problem Set 1

1. (a) Show (this is a recapitulation of something you should know about
countable sets):

If the sets M0,M1,M2, . . . are countable,
then

⋃
n∈NMn is countable as well.

(b) Prove the following lemma (lemma 1 from above) by means of 1a:

If A is a countable alphabet, then the set A∗ (of finite strings over
A) is countable, too.

2. Let S be an arbitrary symbol set. We consider the following calculus
C of rules:

•
x x

(for arbitrary variables x)

• x ti
x f(t1, . . . , tn)

(for arbitrary variables x, for arbitrary S-terms t1, . . . , tn, for arbitrary
n-ary function signs f ∈ S, for arbitrary i ∈ {1, . . . , n}).

Show that for all variables x and all S-terms t holds: The string

x t

is derivable in C if and only if x ∈ var(t) (i.e., x is a variable in t).

3. Prove that the following strings are S-terms (for given S with c, f, g ∈
S, where f is a binary function sign, g is a unary function sign, x and
y are variables):

(a) f(x, c)

(b) g(f(x, c))

(c) f(f(x, c), f(x, f(x, y)))

22

4. Prove that the following strings are S-formulas (with x, y, c, f , g as
in 3 and where P , Q ∈ S, such that P is a unary predicate and Q is a
binary predicate):

(a) ¬P (f(x, c))

(b) ∃x∀y(P (g(f(x, c)))→ Q(y, y))

(c) (∀x¬P (f(x, c)) ∨Q(f(x, c), f(f(x, c), f(x, f(x, y)))))

5. Prove by induction: the string ∀xf(x, c) is not an S-term (where S is
an arbitrary symbol set).

6. Let x, y, z be variables, f ∈ S a unary function sign, P , Q, R ∈ S
with P being a binary predicate, Q a unary predicate, and R a ternary
predicate. Determine for the following S-formulas ϕ the corresponding
set of variables that occur freely in ϕ (i.e., the sets free(ϕ)):

(a) ∀x∃y(P (x, z)→ ¬Q(y))→ ¬Q(y)

(b) ∀x∀y(Q(c) ∧Q(f(x)))→ ∀y∀x(Q(y) ∧R(x, x, y))

(c) Q(z)↔ ∃z(P (x, y) ∧R(c, x, y))

Which of these formulas are sentences (have no free variables at all)?

[Note that we omitted parentheses in 6 as explained in remark 5.]

23

3 Semantics of First-Order Languages

3.1 Models, Variable Assignments, and Semantic Val-
ues

Example 11 Consider SGr = {◦, e}:
The formula ∀x∃y x ◦ y ≡ e is a member of FSGr .

But what does this formula mean?

• If ∀x∃y quantify over the set Z of integers, if ◦ stands for addition in
Z, and if e denotes the integer 0, then the formula means:

“for every integer there is another integer such that the addition of both
is equal to 0”

↪→ if interpreted in this way: the formula is true!

• If ∀x ∃y quantify over Z, if ◦ stands for multiplication in Z, and if e
denotes the integer 1, then the formula means:

“for every integer there is another integer such that the product of both
is equal to 1”

↪→ if interpreted in this way: the formula is false!

Let us now make precise what we understand by such interpretations of
symbol sets of first-order languages:

Definition 5 Let S be an arbitrary symbol set:

An S-model (or S-structure) is an ordered pair M = (D, I), such that:

1. D is a set, D 6= ∅ (“domain”, “universe of discourse”, “range of
the quantifiers”)

2. I is defined on S as follows (“interpretation of S”):

• for n-ary predicates P in S: I(P) ⊆ D × . . .×D︸ ︷︷ ︸
n times

= Dn

• for n-ary function signs f in S: I(f) : Dn → D
(i.e., I(f) is a mapping from Dn to D)

24

• for every constant c in S: I(c) ∈ D

Example 12

1. S = SGr = {◦, e},
D = Z,

I(◦) := + on Z, i.e., I(◦) : Z× Z→ Z with (m,n) 7→ m+ n,

I(e) := 0,

=⇒ M = (D, I) is the model of the set of integers viewed as additive
group.

2. S = SFie = {+, ·, 0, 1},
D = R,

I(+) := + on R,

I(·) := · on R,

I(0) := 0,

I(1) := 1,

=⇒M = (D, I) is the model of the real number field.

3. Now we add < to SFie: SOrdFie = {+, ·, 0, 1, <} with
D = R, . . . (as in 2)

Moreover: I(<) ⊆ R× R such that (d1, d2) ∈ I(<)⇔ d1 < d2

(i.e., I(<) is the less-than relation on real numbers).

=⇒M = (D, I) is the model of the ordered real number field.

Just as an interpretation assigns meaning to predicates, function signs, and
constants, we need a way of assigning values to variables:

Definition 6 A variable assignment over a model M = (D, I) is a function
s : {v0, v1, . . .} → D.

Remark 7 As we will see, we need variable assignments in order to define
the truth values of quantified formulas. Here is the idea:
∀xϕ is true ⇔ whatever d ∈ D a variable assignment assigns to x, ϕ turns
out to be true under this assignment.

25

Analogously for ∃xϕ and the existence of an element d ∈ D.

It is also useful to have a formal way of changing variable assignments:
Let s be a variable assignment over M = (D, I), let d ∈ D:

We define

s
d

x
: {v0, v1, . . .} → D

s
d

x
(y) :=

{
d, y = x
s(y), y 6= x

(where x is some variable in {v0, v1, . . .}).

E.g., s 4
v0

(v0) = 4, s 4
v0

(v1) = s(v1).

Given an S-model together with a variable assignment over this model, we
can define the semantic value of a term/formula:

Definition 7 Let M = (D, I) be an S-model.
Let s be a variable assignment over M:
V alM,s (“semantic value function”) is defined on TS ∪ FS , such that:

(V1) V alM,s(x) := s(x)

(V2) V alM,s(c) := I(c)

(V3) V alM,s(f(t1, . . . , tn)) := I(f) (V alM,s(t1), . . . , V alM,s(tn))

(V4) V alM,s(t1 ≡ t2) := 1⇐⇒ V alM,s(t1) = V alM,s(t2)

(V5) V alM,s (P (t1, . . . , tn)) := 1⇐⇒ (V alM,s(t1), . . . , V alM,s(tn)) ∈ I(P)

(V6) V alM,s(¬ϕ) := 1⇐⇒ V alM,s(ϕ) = 0

(V7) V alM,s(ϕ ∧ ψ) := 1⇐⇒ V alM,s(ϕ) = V alM,s(ψ) = 1

(V8) V alM,s(ϕ ∨ ψ) := 1⇐⇒ V alM,s(ϕ) = 1 or V alM,s(ψ) = 1 (or both)

(V9) V alM,s(ϕ→ ψ) := 1⇐⇒ V alM,s(ϕ) = 0 or V alM,s(ψ) = 1 (or both)

(V10) V alM,s(ϕ↔ ψ) := 1⇐⇒ V alM,s(ϕ) = V alM,s(ψ)

26

(V11) V alM,s(∀xϕ) := 1⇐⇒ for all d ∈ D: V alM,s d
x
(ϕ) = 1

(V12) V alM,s(∃xϕ) := 1⇐⇒ there is a d ∈ D, such that: V alM,s d
x
(ϕ) = 1

For (V4)–(V12): in case the “iff” condition is not satisfied, the corresponding
semantic value is defined to be 0.

Terminology:

V alM,s(t) and V alM,s(ϕ) are the semantic values of t and ϕ respectively
(relative to M, s), where

• V alM,s(t) ∈ D,

• V alM,s(ϕ) ∈ {1, 0}=̂{T,F}.

Instead of writing that V alM,s(ϕ) = 1, we may also say:

• ϕ is true at M, s

• M, s make ϕ true

• M, s satisfy ϕ

• briefly: M, s � ϕ (“�” is called the “semantic turnstile”)

We will also write for sets Φ of formulas:
M, s � Φ ⇔ for all ϕ ∈ Φ : M, s � ϕ

Example 13 Let M be the model of the ordered real number field
(i.e., S = SOrdFie = {+, ·, 0, 1, <}, D = R, I is as described on p.25, M =
(D, I)).
Let s be a variable assignment over M, such that s(v1) = 3:

V alM,s

(
∃v0 v1 < v0 + 1

)
= 1

⇐⇒ there is a d ∈ D = R, such that:
V alM,s d

v0

(
v1 < v0 + 1

)
= 1 (V12)

⇐⇒ there is a d ∈ D = R, such that:(
V alM,s d

v0

(v1), V alM,s d
v0

(v0+1)
)
∈ I(<) (V5)

27

⇐⇒ there is a d ∈ D = R, such that:(
s d
v0

(v1), I(+)
(
V alM,s d

v0

(v0), V alM,s d
v0

(1)
))
∈ I(<) (V1),(V3)

⇐⇒ there is a d ∈ D = R, such that:
(s d

v0
(v1), I(+)(s d

v0
(v0), I(1))) ∈ I(<) (V1),(V2)

⇐⇒ there is a d ∈ D = R, such that:
(s(v1), I(+) (d, 1)) ∈ I(<) (Def. s d

v0
, I)

⇐⇒ there is a d ∈ D = R, such that:
(3, d+ 1) ∈ I(<) (Def. s, I)

⇐⇒ there is a d ∈ D = R, such that:
3 < d+ 1 (Def. I)

Such a d ∈ R = D exists: e.g., d = 3, 4, ...

=⇒ V alM,s

(
∃v0 v1 < v0 + 1

)
= 1 (equivalently: M, s � ∃v0 v1 < v0 + 1)

Examples like these tell us:

Remark 8

1. The semantic value of a term t only depends (i) on the interpretation of
the constants and functions signs that occur in t and (ii) on the values
the assignment function assigns to the variables that occur in t.

2. The semantic value of a formula ϕ only depends (i) on the interpre-
tation of the constants, functions signs, and predicates that occur in ϕ
and (ii) on the values the assignment function assigns to the variables
that occur in ϕ freely (the assignment of values to bound occurrences of
variables are “erased” by the quantifiers which bind these occurrences).

In formal terms:

28

Lemma 4 (Coincidence Lemma)
Let S1,S2 be two symbol sets. Let M1 = (D, I1) be an S1-model, let M2 =
(D, I2) be an S2-model.
Let s1 be a variable assignment over M1, s2 a variable assignment over M2.
Finally, let S = S1 ∩ S2:

1. For all terms t ∈ TS :

If I1(c) = I2(c) for all c in t
I1(f) = I2(f) for all f in t
s1(x) = s2(x) for all x in t

then: V alM1,s1(t) = V alM2,s2(t) (compare 1 in the remark above).

2. For all formulas ϕ ∈ FS :

If I1(c) = I2(c) for all c in ϕ
I1(f) = I2(f) for all f in ϕ
I1(P) = I2(P) for all P in ϕ
s1(x) = s2(x) for all x ∈ free(ϕ)

then: V alM1,s1(ϕ) = V alM2,s2(ϕ) (compare 2 in the remark above).

Proof. (By standard induction over terms and formulas: see the next prob-
lem sheet!)

Corollary 1 Let ϕ be an S-sentence, let s1, s2 be variable assignments over
an S-Modell M :

It follows that V alM,s1(ϕ) = V alM,s2(ϕ).

Proof. Since ϕ is assumed to be a sentence, free(ϕ) = ∅. Therefore,
trivially, s1(x) = s2(x) for all x ∈ free(ϕ).
So we can apply the coincidence lemma, where in this case M1 = M2 = M,
and we are done.

29

Remark 9 We see that as far as sentences are concerned, it is irrelevant
which variable assignment we choose in order to evaluate them:
a sentence ϕ is true in a model M relative to some variable assignment over
M iff ϕ is true in M relative to all variable assignments over M.

Therefore we are entitled to write for sentences ϕ and sets Φ of sentences:

M � ϕ and M � Φ

without mentioning a variable assignment s at all.

Here is an example of what a typical set of sentences satisfied by a model
can look like:

Example 14 (We use again SOrdFie = {+, ·, 0, 1, <} as our symbol set.)

Let Φ be the following set of sentences:

• ∀x∀y∀z x + (y + z) ≡ (x + y) + z

• ∀x x + 0 ≡ x

• ∀x∃y x + y ≡ 0

• ∀x∀y x + y ≡ y + x

↪→ These axioms describe the Abelian group (R,+).

• ∀x∀y∀z x · (y · z) ≡ (x · y) · z

• ∀x x · 1 ≡ x

• ∀x∀y x · y ≡ y · x

• ∀x (¬x ≡ 0 → ∃y x · y ≡ 1)

↪→ These axioms describe the Abelian group (R\{0}, ·).

• ∀x∀y∀z x · (y + z) ≡ (x · y) + (x · z)

30

• ¬ 0 ≡ 1

↪→ All axioms up to here taken together describe the real field (R,+, ·).

• ∀x ¬x < x

• ∀x∀y∀z (x < y ∧ y < z → x < z)

• ∀x∀y (x < y ∨ x ≡ y ∨ y < x)

• ∀x∀y∀z (x < y → x + z < y + z)

• ∀x∀y∀z (x < y ∧ 0 < z → x · z < y · z)

↪→ All axioms taken together describe the real ordered field (R,+, ·).

Now let M be the model of the real ordered field (see p. 25): then M � Φ.

Remark 10 Why are these languages called first-order?
Because there are also second-order languages:

• first order:
∀x,∃x: for all members of D, there is a member of D

• second-order:
∀x,∃x: for all members of D, there is a member of D
But these languages have additional quantifiers of the form:
∀X, ∃X: for all subsets of D, there is a subset of D.

Final remark: From now on no lines above signs anymore (fortunately. . .).

31

3.2 Problem Set 2

1. Let S = {P,R, f, g, c0, c1}, where P is a unary predicate, R is a binary
predicate, and f and g are binary function signs. Let M = (D, I) be
an S-model with D = R, such that I(P) = N, I(R) is the “larger
than” (>) relation on R, I(f) is the addition mapping on R, I(g) is
the multiplication mapping on R, I(c0) = 0, and I(c1) = 1. Finally,
let s be a variable assignment over M with the property that s(x) = 5
and s(y) = 3 (where x, y, and z from below, are fixed pairwise distinct
variables).

Determine the following semantic values by step-by-step application of
the definition clauses for V alM,s; subsequently, translate the terms/for-
mulas into our usual mathematical “everyday” language:

(a) V alM,s(g(x, f(y, c1)))

(b) V alM,s(f(g(x, y), g(x, c1)))

(c) V alM,s(∀x∀y(R(x, c0)→ ∃z(P (z) ∧R(g(z, x), y))))

For which variable assignments s over M is it the case that

P (z) ∧R(z, c1) ∧ ∀x(P (x) ∧ ∃y(P (y) ∧ g(x, y) ≡ z)→ x ≡ c1 ∨ x ≡ z)

is true at M and s?

2. Let S = {P, f}, where P is a unary predicate and f is a binary function
sign.

For each of the following formulas in FS find an S-model and a corre-
sponding variable assignment relative to which the formula is true and
find an S-model and a corresponding variable assignment relative to
which the formula is false:

(a) ∀v1f(v2, v1) ≡ v2

(b) ∃v2∀v1f(v2, v1) ≡ v2

(c) ∃v2(P (v2) ∧ ∀v1P (f(v2, v1)))

3. Let D be finite and non-empty, let S be finite. Show that there are
only finitely many S-models with domain D.

32

4. A formula in which ¬, →, ↔ do not occur is called positive.

Prove: For every positive formula there is a model and a variable assign-
ment which taken together satisfy the formula (independent of what S
is like).

Hint: You might consider “trivial” models the domains of which only
have one member.

5. Prove the coincidence lemma by induction over terms and formulas
(see lemma 4).

33

3.3 Some Important Semantic Concepts

For everything that follows we fix a symbol set S.

Definition 8 For all ϕ ∈ FS ,Φ ⊆ FS :
ϕ follows logically from Φ, briefly: Φ � ϕ iff
for all S-models M, for all variable assignments s over M:

if M, s � Φ, then M, s � ϕ

We also say equivalently:
Φ logically implies ϕ; ϕ is a logical consequence of Φ.

Careful: “�” has different meanings in different contexts!

Example 15 Let S = SGr = {e, ◦}:
Let Φ be the set that has the group axioms (G1), (G2), (G3) of p. 4 (for-
malised by means of SGr) as its only members.
It follows that Φ � ∀x ∃y y ◦ x ≡ e.

This is because if M is a model of Φ, i.e., M � Φ, then (D, I(◦), I(e)) is a
group (for the rest of the argument recall p.4f).

(Note that “◦” on p.4f denotes the group multiplication function in a group,
whereas here “◦” denotes a function sign. In the present context, it is “I(◦)”
which denotes a group multiplication function.)

Furthermore:
Φ 2 ∀x∀y x ◦ y ≡ y ◦ x
Counterexample: any non-Abelian group, e.g. S3 (the permutation group for
a set with three elements).

Φ 2 ¬∀x∀y x ◦ y ≡ y ◦ x
Counterexample: any Abelian group, e.g. (Z,+).

We see that it is not generally the case that: Φ 2 ϕ =⇒ Φ � ¬ϕ

BUT: M, s 2 ϕ =⇒ M, s � ¬ϕ

Now we single out important semantic concepts that apply to formulas of a
particular type.

34

Some formulas have the property of being true under all interpretations :

Definition 9 For all ϕ ∈ FS :
ϕ is logically true iff
for all S-models M, for all variable assignments s over M:

M, s � ϕ

Example 16
(i) ϕ ∨ ¬ϕ, (ii) ∀x∃y x ≡ y are logically true.
(iii) P (c), (iv) ∃xP (x) are not logically true.

Some formulas are true under some interpretation:

Definition 10 For all ϕ ∈ FS ,Φ ⊆ FS :
ϕ is satisfiable iff
there is an S-model M and a variable assignment s over M, such that:
M, s � ϕ.

Φ ⊆ FS is (simultaneously) satisfiable iff there are M, s such that M, s � Φ.

Example 17
(i) ϕ ∨ ¬ϕ, (ii) P (c), (iii) ¬P (c) are satisfiable.
(iv) ϕ ∧ ¬ϕ, (v) ¬∀x x ≡ x are not satisfiable.
{P (c), ∃xQ(x, x)} is satisfiable.
{P (c), ∃xQ(x, x), P (c) → ∀x¬Q(x, x)} is not satisfiable (i.e., not simulta-
neously satisfiable).

Logical consequence, logical truth, and satisfiability are themselves logically
related to each other:

35

Lemma 5 For all ϕ ∈ FS ,Φ ⊆ FS :

1. ϕ is logically true iff ∅ � ϕ.

2. Φ � ϕ iff Φ ∪ {¬ϕ} is not satisfiable.

3. ϕ is logically true iff ¬ϕ is not satisfiable.

Proof.

1. ∅ � ϕ⇐⇒ for all M, s : if M, s � ∅, then M, s � ϕ

(but M, s � ∅ is true for trivial reasons, because what it means is

for all ψ: if ψ ∈ ∅, then M, s � ψ

and the “if”-part of this sentence is false for all ψ)

⇐⇒ for all M, s: M, s � ϕ

⇐⇒ ϕ is logically true (by def.) X

2. Φ � ϕ⇐⇒ for all M, s: if M, s � Φ, then M, s � ϕ

⇐⇒ not there are M, s, such that: M, s � Φ,M, s 2 ϕ
⇐⇒ not there are M, s, such that: M, s � Φ,M, s � ¬ϕ
⇐⇒ not there are M, s, such that: M, s � Φ ∪ {¬ϕ}
⇐⇒ Φ ∪ {¬ϕ} not satisfiable (by def.) X

3. ϕ is logically true

⇐⇒ ∅ � ϕ (by 1.)

⇐⇒ {¬ϕ} is not satisfiable (by 2.)

⇐⇒ ¬ϕ is not satisfiable X

Sometimes two formulas “say the same”:

Definition 11 For all ϕ, ψ ∈ FS :
ϕ is logically equivalent to ψ iff ϕ � ψ and ψ � ϕ.

36

Example 18

• ϕ ∧ ψ is logically equivalent to ¬(¬ϕ ∨ ¬ψ)

• ϕ→ ψ is logically equivalent to ¬ϕ ∨ ψ

• ϕ↔ ψ is logically equivalent to ¬(ϕ ∨ ψ) ∨ ¬(¬ϕ ∨ ¬ψ)

• ∀xϕ is logically equivalent to ¬∃x¬ϕ

This allows us to focus just on ¬, ∨, ∃ in all that follows!

E.g.:

∀x (P (x) ∧Q(x)) is logically equivalent to

¬∃x¬¬ (¬P (x) ∨ ¬Q(x)) is logically equivalent to

¬∃x (¬P (x) ∨ ¬Q(x))

Remark 11 We said that we “fixed” a symbol set S at the beginning of this
subsection. But strictly we have defined “S-logically implies”, “S-logically
true”, “S-satisfiable”, “S-logically equivalent” for arbitrary symbol set S (it
is just so awkward to keep the reference to S while using all these notions)!

Fortunately, the particular choice of a symbol set often does not really matter
so much. E.g.:

Let S,S ′ be symbol sets, such that S ⊆ S ′.
Let ϕ be an S-formula (=⇒ ϕ is also an S ′-formula).
Then:
ϕ is S-satisfiable iff ϕ is S ′-satisfiable.

Proof.
(⇒) Assume that ϕ is S-satisfiable.
By definition, there is an S-model M and there is a variable assignment s
over M, such that:

M, s � ϕ (i.e., V alM,s(ϕ) = 1)

Now we define an S ′-model M′: let D′ := D, I′ |S ≡ I (i.e., I′ and I are
identical on S), I′ on S ′\S is chosen arbitrarily.

37

Furthermore, let s′ := s.

By the coincidence lemma (lemma 4) it follows that M′, s′ � ϕ (since ϕ is
an S-formula, the symbols in S are interpreted in the same way by I′ and I,
and the two models M′ and M have the same domain).
Hence, ϕ is S ′-satisfiable. (M′ is called an expansion of M.) X

(⇐) Analogously (in this case one simply “forgets” about the interpretation
of symbols in S ′\S: this yields a so-called reduct of M′).

By lemma 5: analogously for logical consequence, logical truth, and so forth.

38

3.4 Problem Set 3

1. The convergence of a real-valued sequence (xn) to a limit x is usually
defined as follows:

(Conv) For all ε > 0 there is a natural number n, such that for all
natural numbers m > n it holds that: |xm − x| < ε

Represent (Conv) in a first-order language by choosing an appropriate
symbol set S and define the corresponding S-model.

Hint: (i) Real sequences are functions from N to R, i.e., you may con-
sider xm as being of the form f(m); f can be regarded as being defined
on R even though only its values for members of N are “relevant”.
(ii) |xm − x| may either be considered as the result of applying a bi-
nary “distance” function to the arguments xm and x or as the result
of applying two functions – subtraction and absolute value – to these
arguments.

2. (This problem counts for award of CREDIT POINTS.)
Show that for arbitrary S-formulas ϕ, ψ, ρ, and arbitrary sets Φ of
S-formulas the following is the case:

(a) (ϕ ∨ ψ) � ρ iff ϕ � ρ and ψ � ρ.

(b) Φ ∪ {ϕ} � ψ iff Φ � (ϕ→ ψ).

(c) ϕ � ψ (i.e., {ϕ} � ψ) iff (ϕ→ ψ) is logically true.

3. (a) Prove for arbitrary S-formulas ϕ, ψ:

∃x∀yϕ � ∀y∃xϕ
(b) Show that the following is not the case for all S-formulas ϕ, ψ:

∀y∃xϕ � ∃x∀yϕ

4. (a) Prove for all S-formulas ϕ, ψ:

∃x(ϕ ∨ ψ) is logically equivalent to ∃xϕ ∨ ∃xψ.

(b) Show that the following is not the case for all S-formulas ϕ, ψ:

∃x(ϕ ∧ ψ) is logically equivalent to ∃xϕ ∧ ∃xψ.

5. Let Φ be an S-formula set, let ϕ und ψ be S-formulas. Show:

If Φ ∪ {ϕ} � ψ and Φ � ϕ, then Φ � ψ.

39

6. A set Φ of S-sentences is called “independent if and only if there is no
ϕ ∈ Φ such that: Φ\ {ϕ} � ϕ (i.e., no ϕ is “redundant”, because it is
impossible to conclude ϕ from Φ\ {ϕ}).
Prove: (a) the set of the three group axioms and (b) the set of the three
axioms for equivalence structures are both independent (see chapter one
for these axioms).

40

3.5 Substitution and the Substitution Lemma

In the next chapter on the sequence calculus we will consider derivation rules
by which terms t can be substituted for variables x. E.g.:

Example 19

• From

∀x P (x)

one can conclude

P (t) } formula that results from P (x) by substituting t for x

• From

P (t) } formula that results from P (x) by substituting t for x

one can conclude

∃x P (x)

• From

P (t1)} formula that results from P (x) by substituting t1 for x
t1 ≡ t2

one can conclude

P (t2) } formula that results from P (x) by substituting t2 for x

But one has to be careful :

Should we be allowed to draw an inference from

∀x ∃y y < x } true in the model of the real ordered field
to

∃y y < y } false in the model of the real ordered field

by a substitution of y for x?

No!

41

Why does this last substitution go wrong?
In

∃y y < x

the variable x occurs freely, but in

∃y y < y

the second occurrence of y, which was substituted for x, is bound!
=⇒ This corresponds to a change of meaning.

Problems like these can be avoided in the following manner:
Draw an inference from ∀x∃y y < x︸ ︷︷ ︸

↓
convert into: ∀x∃u u < x
then: substitute y for x

to ∃u u < y
(this last formula is true in the model of the real ordered field – independent
of which real number is chosen to be s(y)).

Wanted:

1. An “intelligent” substitution function t
x

by which a term t is substituted
for free occurrences of a variable x (substitutions for bound occurrences
should be prohibited), such that problematic cases as the above one are
avoided by automatic renaming of bound variables.

2. It should be possible to substitute terms t0, . . . , tn “simultaneously” for
pairwise distinct variables x0, . . . , xn (t0 for x0, t1 for x1,. . .).

E.g.: [P (x, y)]y,x
x,y

= P (y, x)

(y is substituted for x and simultaneously x is substituted for y.)

BUT: [[P (x, y) y
x
]x
y
] = [P (y, y)]x

y
= P (x, x)!

(So simultaneous substitution cannot be replaced by the iteration of
simple substitutions.)

3. We want:

V alM,s

(
t t0,...,tn
x0,...,xn

)
= V al

M,s
V alM,s(t0),...,V alM,s(tn)

x0,...,xn

(t)

42

4. We want:

M, s � ϕ t0,...,tn
x0,...,xn

⇐⇒ M, s
V alM,s(t0),...,V alM,s(tn)

x0,...,xn
� ϕ

So we also need a generalized way of manipulating variable assignments; let
x0, . . . , xn be pairwise distinct variables:

s d0,...,dn
x0,...,xn

(y) =

{
s(y) if y 6= x0, . . . , xn
di if y = xi (for 0 ≤ i ≤ n)

This is how a substitution function that satisfies 1.–4. can be defined:

Definition 12 Let S be an arbitrary symbol set.
Let t0, . . . , tn ∈ TS , let x0, . . . , xn be pairwise distinct variables.
We define the substitution function t0,...,tn

x0,...,xn
on TS ∪ FS as follows:

• [x] t0,...,tn
x0,...,xn

:=

{
ti for x = xi (0 ≤ i ≤ n)
x else

• [c] t0,...,tn
x0,...,xn

:= c

• [f(t′1, . . . , t
′
m)] t0,...,tn

x0,...,xn
:= f

(
[t′1] t0,...,tn

x0,...,xn
, . . . , [t′m] t0,...,tn

x0,...,xn

)
• [t′1 ≡ t′2] t0,...,tn

x0,...,xn
:= [t′1] t0,...,tn

x0,...,xn
≡ [t′2] t0,...,tn

x0,...,xn

• [P (t′1, . . . , t
′
m)] t0,...,tn

x0,...,xn
is defined analogously to the case of ≡

• [¬ϕ] t0,...,tn
x0,...,xn

:= ¬[ϕ] t0,...,tn
x0,...,xn

• [ϕ ∨ ψ] t0,...,tn
x0,...,xn

:= ([ϕ] t0,...,tn
x0,...,xn

∨ [ψ] t0,...,tn
x0,...,xn

)

(accordingly for ∧, →, ↔)

• ∃xϕ:

Let xi1 , . . . , xik be those variables xi among x0, . . . , xn for which it holds
that:

• xi ∈ free(∃xϕ)

• xi 6= ti

(Call these variables the relevant variables of the substitution.)

43

[∃xϕ] t0,...,tn
x0,...,xn

:= ∃u [ϕ]
ti1 ,...,tik ,u

xi1 ,...,xik ,x

where u := x, if x does not occur in ti1 , . . . , tik

else: let u be the first variable in v0, v1, v2, . . . that does not occur
in ϕ, ti1 , . . . , tik

Note that we use ‘[.]’ in order to make clear to what term or formula we
apply the substitution function t0,...,tn

x0,...,xn
.

Remark 12 Consider the substitution case for ∃xϕ:

• x is certainly distinct from any of xi1 , . . . , xik , because x /∈ free(∃xϕ).

• Assume there are no variables xi with xi ∈ free(∃xϕ) and xi 6= ti
(so there are no relevant variables)

=⇒ k = 0

=⇒ there are no ti1 , . . . , tik to consider

=⇒ x does not occur within ti1 , . . . , tik

=⇒ u = x (there is nothing to rename)

=⇒ [∃xϕ] t0,...,tn
x0,...,xn

= ∃u[ϕ]u
x

= ∃x[ϕ]x
x

= ∃xϕ

• It follows from the definition of our substitution function that u does
not occur within ti1 , . . . , tik .

Example 20 (For two variables x, y with x 6= y:)

• [∃y y < x] y
x

= ∃u [y < x]y,u
x,y

(since y occurs within ti1, i.e., within y, it follows from

our definition that u must be distinct from x, y)

= ∃u [y]y,u
x,y

< [x]y,u
x,y

= ∃u u < y X

The renaming works!

(Later we will use this in order to draw inferences such as the one from
∀x∃y y < x to ∃u u < y.)

44

• [∃y y < x]x
y

(since y is not free in ∃y y < x, only the substitution

for u is going to remain)

= ∃u[y < x]u
y

(since the number k of relevant variables is in this
case 0, there are no ti1 , . . . , tik in which y could occur, thus it follows
that u = y)

= ∃y[y < x]y
y

= ∃y y < x

We see that nothing can be substituted for bound variables.

• [∃v0 P (v0, f(v1, v2))]v0,v2,v4

v1,v2,v0

(in the second substitution we have x1 = t1 = v2 and in the third sub-
stitution v0 is bound in ∃v0 P (v0, f(v1, v2)), so these two substitutions
are omitted; furthermore, since v0 occurs within ti1 = v0, it follows that
u = v3 because v3 is the variable with least index that does not occur in
ϕ, ti1 , . . . , tik , i.e., in ∃v0P (v0, f(v1, v2)) , v0)

= ∃v3[P (v0, f(v1, v2))]v0,v3

v1,v0

= ∃v3P (v3, f(v0, v2))

Lemma 6 (Substitution Lemma)
Let M be an S-model:

1. For all terms t ∈ TS :

For all variable assignments s over M, for all terms t0, . . . , tn ∈ TS ,
for all pairwise distinct variables x0, . . . , xn:

V alM,s(t
t0,...,tn
x0,...,xn

) = V al
M,s

V alM,s(t0),...,V alM,s(tn)

x0,...,xn

(t)

2. For all formulas ϕ ∈ FS :

For all variable assignments s over M, for all terms t0, . . . , tn ∈ TS ,
for all pairwise distinct variables x0, . . . , xn:

M, s � ϕ t0,...,tn
x0,...,xn

iff M, s
V alM,s(t0),...,V alM,s(tn)

x0,...,xn
� ϕ

Proof. By induction over terms and formulas:
Concerning 1:

45

• t = c : X

• t = x :

a) assume x 6= x0, . . . , xn

=⇒ [x] t0,...,tn
x0,...,xn

= x

=⇒ V alM,s(x
t0,...,tn
x0,...,xn

) = V alM,s(x) = s(x)

= s
V alM,s(t0),...,V alM,s(tn)

x0,...,xn
(x)

= V al
M,s

V alM,s(t0),...,V alM,s(tn)

x0,...,xn

(x) X

b) assume x = xi for 0 ≤ i ≤ n

=⇒ [x] t0,...,tn
x0,...,xn

= ti

=⇒ V alM,s(x
t0,...,tn
x0,...,xn

) = V alM,s(ti)

= s
V alM,s(t0),...,V alM,s(tn)

x0,...,xn
(xi)

= V al
M,s

V alM,s(t0),...,V alM,s(tn)

x0,...,xn

(xi)︸︷︷︸
= x by ass.

X

• t = f(t′1, . . . , t
′
m): by inductive assumption X

Concerning 2:

• ϕ = P (t′1, . . . , t
′
m):

M, s � [P (t′1, . . . , t
′
m)] t0,...,tn

x0,...,xn

⇐⇒M, s � P
(

[t′1] t0,...,tn
x0,...,xn

, . . . , [t′m] t0,...,tn
x0,...,xn

)
⇐⇒

(
V alM,s

(
[t′1] t0,...,tn

x0,...,xn

)
, . . . , V alM,s

(
[t′m] t0,...,tn

x0,...,xn

))
∈ I(P)

(def. of V al)

⇐⇒
(
V al

M,s
V alM,s(t0),...,V alM,s(tn)

x0,...,xn

(t′1), . . . , V al
M,s

V alM,s(t0),...,V alM,s(tn)

x0,...,xn

(t′m)

)
∈

I(P) (by 1.)

⇐⇒M, s
V alM,s(t0),...,V alM,s(tn)

x0,...,xn
� P (t′1, . . . , t

′
m) X

• ϕ = (t′1 ≡ t′m): analogously X

• ¬, ∨: obvious by inductive assumption X

46

• ∧, →, ↔, ∀: need not be treated as extra cases (express them in terms
of ∨, ¬, ∃) X

• ϕ = ∃xψ: we assume inductively that 2. from above is true of ψ

M, s � [∃x ψ] t0,...,tn
x0,...,xn

⇐⇒M, s � ∃u [ψ]
ti1 ,...,tik ,u

xi1 ,...,xik ,x
(def. of substitution)

⇐⇒ there is a d ∈ D, such that:

M, s d
u
� [ψ]

ti1 ,...,tik ,u

xi1 ,...,xik ,x
(def. of V al)

⇐⇒ there is a d ∈ D, such that:

M,
(
s d
u

) V al
M,s du

(ti1),...,V al
M,s du

(tik),V al
M,s du

(u)

xi1 ,...,xik ,x
� ψ (by ind. ass.)

⇐⇒ there is a d ∈ D, such that:

M,
(
s d
u

) V alM,s(ti1),...,V alM,s(tik),d

xi1 ,...,xik ,x
� ψ

(by the coincidence lemma, which we can apply because u not in
ti1 , . . . , tik – see p. 44)

⇐⇒ there is a d ∈ D, such that:

M, s
V alM,s(ti1),...,V alM,s(tik),d

xi1 ,...,xik ,x
� ψ

(Because:

in case u = x : one of the d
u

is superfluous and can be omitted

in case u 6= x : u /∈ ψ ⇒ apply coincidence lemma)

⇐⇒ there is a d ∈ D, such that:

M,
(
s
V alM,s(ti1),...,V alM,s(tik)

xi1 ,...,xik

)
d
x
� ψ (x 6= xi1 , . . . , xik – see p. 44)

⇐⇒M, s
V alM,s(ti1),...,V alM,s(tik)

xi1 ,...,xik
� ∃x ψ (def. of V al(∃xψ))

⇐⇒M, s
V alM,s(t0),...,V alM,s(tn)

x0,...,xn
� ∃x ψ

Since: for i /∈ {i1, . . . , ik} (i.e., for the index of an irrelevant variable)
either of the following must be the case:

i) xi /∈ free(∃xψ) ⇒ apply coincidence lemma (V al only depends on
free variables)! X

ii) xi = ti : V alM,s(ti) = V alM,s(xi) = s(xi)

47

before the equivalence sign: xi 7→ s(xi)
after the equivalence sign: xi 7→ V alM,s(ti) = s(xi) X

Remark 13 It is easy to express unique existence by means of substitution:
∃!xϕ := ∃x(ϕ ∧ ∀y(ϕ y

x
→ y ≡ x))

By the substitution lemma:
M, s � ∃!xϕ ⇐⇒
there is one and only one d ∈ D, such that: M, s d

x
� ϕ

48

3.6 Problem Set 4

1. Show:

(a) [∃v0∃v1(P (v0, v2) ∧ P (v1, v3))]
v2 v2 v2

v0 v1 v3

= ∃v0∃v1(P (v0, v2) ∧ P (v1, v2))

(b) [∃v0∃v1(P (v0, v2) ∧ P (v1, v3))]
v3 f(v2, v3)
v2 v3

= ∃v0∃v1(P (v0, v3) ∧ P (v1, f(v2, v3)))

(c) [∃v0∃v1(P (v0, v2) ∧ P (v1, v3))]
v2 v0 f(v2, v3)
v0 v2 v3

= ∃v4∃v1(P (v4, v0) ∧ P (v1, f(v2, v3)))

(d) [∀v0∃v1(P (v0, v1) ∧ P (v0, v2)) ∨ ∃v2f(v2, v2) ≡ v0]
v0 f(v0, v1)
v0 v2

= ∀v3∃v4(P (v3, v4) ∧ P (v3, f(v0, v1))) ∨ ∃v2f(v2, v2) ≡ v0

2. Let t0, . . . , tn be S-terms, x0, . . . , xn pairwise distinct variables, ϕ an
S-formula and y a variable.

Prove:

(a) If π is a permutation of the numbers 0, . . . , n, then:

ϕ
t0, . . . , tn
x0, . . . , xn

= ϕ
tπ(0), . . . , tπ(n)

xπ(0), . . . , xπ(n)

(b) If y ∈ var(t t0, . . . , tn
x0, . . . , xn

), then

i. y ∈ var(t0) ∪ . . . ∪ var(tn) or

ii. y ∈ var(t) and y 6= x0, . . . , xn.

49

4 A Sequent Calculus for First-Order Predi-

cate Logic

In the following we will make precise what we mean by a “mathematical
proof”.

4.1 Preliminary Remarks on the Sequent Calculus

(Informal) Mathematical proofs have roughly a structure like this:}
Assumptions (axioms, definitions, proved theorems,. . .)

}
Derivation steps

}
Theorem

We are going to call sequences of sentences like this “sequents”. If such
sequents correspond to actual proofs, we will call them “correct”.

More formally: Let S be an arbitrary symbol set.

An (S-)sequent is a finite sequence

ϕ1ϕ2 . . . ϕn−1ϕn

of S-formulas (n ≥ 1).

We call

• ϕ1ϕ2 . . . ϕn−1 the antecedent of the sequent (“assumptions”)

• ϕn the consequent of the sequent (i.e., the formula for which we want
to claim that it follows from the assumptions)

50

While proving theorems informally, we implicitly “manipulate” sequents in
various ways (we extend sequents, we drop auxiliary assumptions,. . .).

E.g., indirect proofs:
add the negation of what you want to prove;
derive a contradiction;
conclude the sentence you intended to prove.

Formally:

• Show that both

ϕ1 . . . ϕk ¬ψ ρ

and

ϕ1 . . . ϕk ¬ψ ¬ρ
are correct.

• Conclude that

ϕ1 . . . ϕk ψ (¬ψ is dropped because it led to a contradiction)

is correct.

We have to make “show” and “conclude” precise. What we need is (i) rules
which introduce sequents that are obviously correct, like

ϕϕ

and (ii) rules which lead from correct sequents to further correct sequents,
e.g.,

ϕ1 . . . ϕk ¬ψ ρ
ϕ1 . . . ϕk ¬ψ ¬ρ

}
Premises

ϕ1 . . . ϕk ψ } Conclusion

Rules such as the latter will often be abbreviated, e.g., by

Γ ¬ψ ρ
Γ ¬ψ ¬ρ
Γ ψ

(so we use “Γ”, “∆”,. . . as variables for sequents).

51

The sequent calculus is a specific set of such rules (some have premises, some
have not). We will see that its premise-free rules only lead to correct sequents
and that its rules with premises lead from correct sequents to other correct
sequent (so these rules are “correctness-preserving”).

But what is the correctness of a sequent?

Definition 13 For all S-sequents Γ ϕ:
Γ ϕ is correct :iff {ψ|ψ is sequence member of Γ}︸ ︷︷ ︸

briefly: Γ

� ϕ

(We will exploit the systematic ambiguity of “Γ” and other capital Greek
letters: in some contexts they will denote sequents of formulas, in other con-
texts they will denote sets of formulas, in particular, sets of members of a
sequent – never mind. . .).

Once we are given the rules of the sequent calculus, derivability of sequents
in the sequent calculus can be defined analogously to derivability of terms in
the terms calculus.

Finally, we can define the derivability of formulas from other formulas on
basis of the derivability of sequents:

Definition 14 Let Φ be a set of S-formulas, let ϕ be an S-formula:
ϕ is derivable from Φ, briefly: Φ ` ϕ :iff
there are ϕ1, . . . , ϕn ∈ Φ, such that

ϕ1 . . . ϕnϕ

is derivable in the sequent calculus.

Our goal is to prove:

Φ ` ϕ ⇐⇒ Φ � ϕ (Soundness and Completeness Theorem)

=⇒: Soundness of the sequent calculus
⇐=: Completeness of the sequent calculus

Lemma 7 Φ ` ϕ ⇐⇒ there is a finite set Φ′ ⊆ Φ such that Φ′ ` ϕ

Proof.
(⇒:) follows from the definition of ` X
(⇐:) X

52

Now we are going to introduce the rules of the sequent calculus. These rules
are divided into the following groups: basic rules; rules for propositional
connectives; rules for quantifiers; rules for equality.

4.2 Basic Rules

Antecedent rule: (Ant.)

Γϕ
Γ′ϕ (for Γ ⊆ Γ′)

(“Γ ⊆ Γ′” means: every sequence member of Γ is a sequence member of Γ′)

Explanation:

We are always allowed to add assumptions and we are always allowed to
permute them.

Correctness:
Proof. Assume that Γϕ is correct, i.e., Γ � ϕ.
Let Γ′ be a set of S-formulas, such that Γ′ ⊇ Γ.
Let M, s be chosen arbitrarily, such that M, s � Γ′.
=⇒M, s � Γ
=⇒M, s � ϕ (by assumption)
It follows that Γ′ � ϕ, i.e., Γ′ϕ is correct.

Assumption rule: (Ass.)

Γϕ (for ϕ being a sequence member of Γ)

Explanation:

We are always allowed to conclude assumptions from themselves.

Correctness:
Proof.
If ϕ ∈ Γ, then certainly Γ � ϕ; hence, Γϕ is correct.

53

4.3 Rules for Propositional Connectives

Proof by cases: (PC)

Γ ψ ϕ

Γ¬ψ ϕ

Γ ϕ

(
e.g. x ≥ 0⇒ ϕ

x < 0⇒ ϕ

}
=⇒ ϕX

)

Explanation:

If we can show ϕ both under the assumption ψ and under the assumption
¬ψ (and since one of these two assumptions must actually be the case), we
are allowed to conclude ϕ without assuming anything about ψ or ¬ψ.

Note that this rule allows us to shorten sequents.

Correctness:
Proof. Assume that Γψϕ, Γ¬ψϕ are correct, i.e.,

Γ ∪ {ψ} � ϕ, Γ ∪ {¬ψ} � ϕ

Let M, s be chosen arbitrarily such that M, s � Γ.

There are two possible cases:
Case 1: M, s � ψ
=⇒M, s � Γ ∪ {ψ}
=⇒M, s � ϕ X (by assumption)

Case 2: M, s 2 ψ
=⇒M, s � ¬ψ
=⇒M, s � Γ ∪ {¬ψ}
=⇒M, s � ϕ X (by assumption)

=⇒ Γ � ϕ =⇒ Γϕ is correct.

54

Contradiction: (CD)

Γ¬ψ ρ

Γ¬ψ¬ρ
Γ ψ

Explanation:

If assuming ¬ψ leads to a contradiction, then we are allowed to infer ψ.

Correctness:
Proof. Assume that Γ¬ψρ, Γ¬ψ¬ρ are correct, i.e.,

Γ ∪ {¬ψ} � ρ, Γ ∪ {¬ψ} � ¬ρ.

So for all M, s with M, s � Γ ∪ {¬ψ} it must hold that:

M, s � ρ and M, s � ¬ρ︸ ︷︷ ︸
⇔M,s2ρ

=⇒ there are no M, s such that M, s � Γ ∪ {¬ψ} (?)
=⇒ for all M, s with M, s � Γ holds: M, s � ψ

Because: otherwise there would exist M, s with M, s � Γ and M, s 2 ψ︸ ︷︷ ︸
M,s�¬ψ

But this would contradict (?)!

=⇒ Γ � ψ =⇒ Γψ is correct.

55

∨-Introduction in the antecedent: (∨-Ant.)

Γϕ ρ

Γψ ρ

Γ(ϕ ∨ ψ)︸ ︷︷ ︸
antecedent

ρ

Explanation:

Disjunctions ϕ ∨ ψ in the antecedent allow for being treated in terms of two
cases – case ϕ on the one hand and case ψ on the other.

(Here the sequents in question do not get shorter.)

Correctness: analogous to proof by cases!

∨-Introduction in the consequent: (∨-Con.)

(i)
Γϕ

Γ(ϕ ∨ ψ)
(ii)

Γψ

Γ(ϕ ∨ ψ)

Explanation:

We are always allowed to weaken consequents by introducing disjunctions.

Correctness:
Proof. (i) Assume that Γϕ is correct, i.e. Γ � ϕ.
=⇒ for all M, s with M, s � Γ holds:

M, s � ϕ︸ ︷︷ ︸
⇒M,s�ϕ∨ψ

=⇒ Γ � ϕ ∨ ψ =⇒ Γ(ϕ ∨ ψ) is correct.

(ii) Analogously.

From the rules introduced so far we can “derive” further rules in the sense
that these latter rules can be regarded as abbreviations of combined appli-
cations of the rules above:

56

– Excluded middle: (EM)

ϕ∨¬ϕ
Derivation:

1. ϕ ϕ (Ass.)

2. ϕ ϕ ∨ ¬ϕ (∨-Con.(i)) with 1.

3. ¬ϕ ¬ϕ (Ass.)

4. ¬ϕ ϕ ∨ ¬ϕ (∨-Con.(ii)) with 3.

5. ϕ ∨ ¬ϕ (PC) with 2., 4.

– Triviality: (Triv.)

Γϕ

Γ¬ϕ
Γψ

Derivation:

1. Γϕ (Premise)

2. Γ¬ϕ (Premise)

3. Γ¬ψϕ (Ant.) with 1.

4. Γ¬ψ¬ϕ (Ant.) with 2.

5. Γψ (CD) with 3.,4.

– Chain syllogism: (CS)

Γϕψ

Γϕ

Γψ

57

Derivation:

1. Γϕψ (Premise)

2. Γϕ (Premise)

3. Γ¬ϕϕ (Ant.) with 2.

4. Γ¬ϕ¬ϕ (Ass.)

5. Γ¬ϕψ (Triv.) with 3.,4.

6. Γψ (PC) with 1.,5.

– Contraposition: (CP)

1.
Γϕψ

Γ¬ψ¬ϕ 2.
Γϕ¬ψ
Γψ¬ϕ 3.

Γ¬ϕψ
Γ¬ψϕ 4.

Γ¬ϕ¬ψ
Γψϕ

Derivation:

1. 1. Γϕψ (Premise)

2. Γ¬ψϕψ (Ant.) with 1.

3. Γ¬ψϕ¬ψ (Ass.)

4. Γ¬ψϕ¬ϕ (Triv.) with 2.,3.

5. Γ¬ψ¬ϕ¬ϕ (Ass.)

6. Γ¬ψ¬ϕ (PC) with 4.,5.

2.-4. analogously

(Note that we could not have used CD in order to derive 6. directly from 2.
and 3.: ϕ is not necessarily a negation formula as demanded by CD!)

– Disjunctive syllogism: (DS)

Γ(ϕ ∨ ψ)

Γ¬ϕ
Γψ

58

Plan of derivation:
First derive Γϕψ and Γψψ on the basis of Γ¬ϕ.
=⇒ Γϕ ∨ ψ ψ will be derivable =⇒ using chain syllogism we will be done!

Derivation:

1. Γϕ ∨ ψ (Premise)

2. Γ¬ϕ (Premise)

3. Γϕ¬ϕ (Ant.) with 2.

4. Γϕϕ (Ass.)

5. Γϕψ (Triv.) with 4.,3.

6. Γψψ (Ass.)

7. Γϕ ∨ ψ ψ (∨-Ant.) with 5.,6.

8. Γψ (CS) with 7.,1.

4.4 Rules for Quantifiers

(In the following, x and y are arbitrary variables again.)

∃-Introduction in the consequent: (∃-Con.)

Γϕ t
x

Γ∃xϕ

Explanation:

If we can conclude from Γ that t has the property expressed by the formula
ϕ, then we are also allowed to conclude from Γ that there exists something
which has the property expressed by ϕ.

Correctness:
Proof. Assume that Γϕ t

x
is correct, i.e., Γ � ϕ t

x
.

Let M, s be arbitrary, such that M, s � Γ.
=⇒M, s � ϕ t

x
(by assumption)

=⇒M, s
V alM,s(t)

x
� ϕ (substitution lemma)

=⇒ there is a d ∈ D, such that M, s d
x
� ϕ (d = V alM,s(t))

59

=⇒M, s � ∃xϕ
=⇒ Γ � ∃xϕ =⇒ Γ ∃xϕ is correct.

∃-Introduction in the antecedent: (∃-Ant.)

Γϕy
x ψ

Γ∃xϕ ψ (if y is not free in the sequent Γ∃xϕ ψ)

Explanation:

Assume that we can derive from Γ and from the fact that y has the property
expressed by ϕ the conclusion that ψ is the case. Furthermore assume that
Γ does not include any assumptions on y nor does ψ say anything about y.
Then we are allowed to conclude ψ from Γ together with the assumption that
there exists some x which has the property expressed by ϕ.
Compare the proof of “For all x there is a y, such that y ◦ x = e” (theorem
1) in chapter 1: there we had

Proof.
• Let x be arbitrary (in G).
• By (G3) there is a y, such that x ◦ y = e.
Now let y be some group element for which x ◦ y = e:
• for this y it follows from (G3) that there is a z, such that . . .
...
• =⇒ y ◦ x = e, which implies that there is a left-inverse element for x.
So we have shown for our arbitrarily chosen y for which x ◦ y = e holds that
it is a left-inverse element of x and thus that there is a left-inverse element
for x. But since y was chosen arbitrarily in the sense that we did not assume
anything about y except that it satisfies x ◦ y = e, the same conclusion can
be drawn from the mere existence of a group element that satisfies x◦y = e.

Now written in terms of sequents:

Γ︷ ︸︸ ︷
Group axioms

ϕ y
y︷ ︸︸ ︷

x ◦ y ≡ e

ψ︷ ︸︸ ︷
∃y y ◦ x ≡ e

Group axioms︸ ︷︷ ︸
Γ

∃y x ◦ y ≡ e︸ ︷︷ ︸
ϕ

∃y y ◦ x ≡ e︸ ︷︷ ︸
ψ

60

The “if”-condition (y not free in Γ ∃yϕψ) is satisfied and thus neither Γ∃yϕ
nor ψ contains any information about y.

Correctness:
Proof. Assume Γϕ y

x
ψ is correct,

i.e., Γ ∪ {ϕ y
x
} � ψ (?) and y is not free in Γ ∃xϕ ψ

Let M, s be arbitrary with M, s � Γ ∪ {∃xϕ} (to show: M, s � ψ).
=⇒M, s � ∃xϕ
=⇒ there is a d ∈ D, such that M, s d

x
� ϕ

=⇒ there is a d ∈ D, such that M, (sd
y
) d
x
� ϕ

because:
for x = y : X
for x 6= y : by assumption, y /∈ free(∃x ϕ)

=⇒ y /∈ free(ϕ) (since y 6= x)
Thus: M, s d

x
� ϕ ⇐⇒ M, (sd

y
) d
x
� ϕ X

(by the coincidence lemma, for y /∈ free(ϕ))

=⇒ there is a d ∈ D, such that M, (sd
y
)

d︷ ︸︸ ︷
V alM,s d

y
(y)

x
� ϕ

Hence, by the substitution lemma: M, sd
y
� ϕ y

x

Furthermore: by assumption M, s � Γ
=⇒M, sd

y
� Γ (from the coincidence lemma – y /∈ free(Γ))

Thus, for d as above:
M, sd

y
� Γ ∪ {ϕ y

x
}

=⇒M, sd
y
� ψ (by (?))

=⇒M, s � ψ (coincidence lemma, for y /∈ free(ψ))
=⇒ Γ ∪ {∃xϕ} � ψ =⇒ Γ ∃xϕ ψ is correct.

Remark 14 Postulating the “if” condition is necessary:

[P (x, y)] y
x

P (y, y) (correct by Ass. rule)

∃xP (x, y)︸ ︷︷ ︸
ϕ

P (y, y)︸ ︷︷ ︸
ψ

(incorrect – e.g. <-relation on R)

Not an instance of our rule: y is free in ∃xP (x, y) P (y, y)!

61

4.5 Rules for Equality

Reflexivity: (Ref.)

t≡t
Explanation:

The equality relation on D is reflexive (independent of the model).

Correctness:
Proof.
For all M, s holds:

V alM,s(t) = V alM,s(t)
=⇒M, s � t ≡ t

Substitution rule: (Sub.)

Γ ϕ t
x

Γ t ≡ t′ ϕt
′
x

Explanation:

Substitution of identicals!

Correctness:
Proof. Assume Γϕ t

x
is correct, i.e., Γ � ϕ t

x
.

Let M, s be arbitrary with M, s � Γ ∪ {t ≡ t′} (to show: M, s � ϕ t′

x
)

=⇒M, s � ϕ t
x

(from the assumption)

=⇒M, s
V alM,s(t)

x
� ϕ (substitution lemma)

Since M, s � t ≡ t′ =⇒ V alM,s(t) = V alM,s(t
′)

and therefore also: M, s
V alM,s(t

′)

x
� ϕ

=⇒M, s � ϕ t′

x
(substitution lemma)

=⇒ Γ ∪ {t ≡ t′} � ϕ t′

x
=⇒ Γ t ≡ t′ ϕ t′

x
is correct

62

From the rules in sections 4.4 and 4.5 we can derive the following auxiliary
rules:

–
Γ ϕ

Γ ∃xϕ
by (∃-Con.) (t := x; ϕx

x
= ϕ)

–
Γ ϕ ψ

Γ ∃xϕ ψ (if x is not free in Γ ψ)

by (∃-Ant.) (y := x; note that x is of course bound in ∃xϕ)

–
Γ ϕ

Γ x ≡ t′ ϕt
′
x

by (Sub.) (t := x)

– Symmetry: (Symm.)

Γ t1 ≡ t2
Γ t2 ≡ t1

Since:

1. Γ t1 ≡ t2 (Premise)
2. t1 ≡ t1 (Ref.)
3. Γ t1 ≡ t1︸ ︷︷ ︸

=ϕ
t1
x

(Ant.) with 2.

4. Γ t1 ≡ t2 t2 ≡ t1︸ ︷︷ ︸
=ϕ

t2
x

(Sub.) with 3. for ϕ = x ≡ t1 =⇒ ϕ t1
x

= t1 ≡ t1, ϕ
t2
x

= t2 ≡ t1

5. Γ t2 ≡ t1 (CS) with 4.,1.

63

– Transitivity: (Trans.)

Γ t1 ≡ t2
Γ t2 ≡ t3
Γ t1 ≡ t3

Since:

1. Γ t1 ≡ t2 (Premise)

2. Γ t2 ≡ t3 (Premise)

3. Γ t2 ≡ t3 t1 ≡ t3 (Sub.) with 1. for ϕ = t1 ≡ x =⇒ ϕ t2
x

= t1 ≡ t2, ϕ
t3
x

= t1 ≡ t3

4. Γ t1 ≡ t3 (CS) with 3.,2.

– Γ P (t1, . . . , tn)
Γ t1 ≡ t′1

...
Γ tn ≡ t′n
Γ P (t′1, . . . , t

′
n)

Since: (e.g. for n = 2)

1. Γ P (t1, t2) (Premise)

2. Γ t1 ≡ t′1 (Premise)

3. Γ t2 ≡ t′2 (Premise)

4. Γ t1 ≡ t′1 P (t′1, t2) (Sub.) with 1. for ϕ = P (x, t2)

5. Γ P (t′1, t2) (CS) with 4.,2.

6. Γ t2 ≡ t′2 P (t′1, t
′
2) (Sub.) with 5. for ϕ = P (t′1, x)

7. Γ P (t′1, t
′
2) (CS) with 6.,3.

64

Analogously:

– Γ t1 ≡ t′1
...

Γ tn ≡ t′n
Γ f(t1, . . . , tn) ≡ f(t′1, . . . , t

′
n)

For the proof: by Reflexivity
f(t1,...,tn)≡f(t1,...,tn)

, then add Γ by (Ant.) ⇒
Subst. ⇒ CS (repeat last two steps n times)

4.6 The Soundness Theorem for the Sequent Calculus

It follows:

Theorem 3 (Soundness Theorem)
For all Φ ⊆ FS , for all ϕ ∈ FS , it holds:

If Φ ` ϕ, then Φ � ϕ.

Proof.
Assume Φ ` ϕ, i.e., there are ϕ1, . . . , ϕn ∈ Φ, such that the sequent ϕ1 . . . ϕnϕ
is derivable in the sequent calculus.

I.e. 1. . . .
2. . . .

...
m. ϕ1 . . . ϕnϕ

We have already shown: each rule of the sequent calculus is correct (premise-
free rules lead to correct sequents, rules with premises preserve correctness).
By induction over the length of derivations in the sequent calculus it follows:
Every sequent that is derivable in the sequent calculus is correct.

So this must hold also for ϕ1 . . . ϕnϕ, thus {ϕ1, . . . , ϕn}︸ ︷︷ ︸
⊆Φ

� ϕ

⇒ Φ � ϕ.

65

Remark 15 The sequent calculus does not only contain correct rules for
¬, ∨, ∃, ≡, but also for ∧, →, ↔, ∀ by means of the metalinguistic abbre-
viations that we considered in the chapter on semantics.
E.g. ϕ→ ψ := ¬ϕ ∨ ψ
Using such abbreviations we get:

Modus Ponens:

Γ

¬ϕ∨ψ︷ ︸︸ ︷
ϕ→ ψ

Γ ϕ

Γ ψ

proof analogous to:
Γ ϕ ∨ ψ
Γ ¬ϕ
Γ ψ

4.7 Some Important Proof-Theoretic Concepts

(Compare section 3.3!)

We have already defined the notion of derivability for formulas (“Φ ` ϕ”).

Some formulas have the property of being derivable without any premises :

Definition 15 For all ϕ ∈ FS :
ϕ ist provable :iff the (one-element) sequent ϕ is derivable in the sequent
calculus (briefly: ` ϕ).

E.g., we know that ϕ ∨ ¬ϕ (for arbitrary ϕ ∈ FS) is provable: see p. 57.

Some formulas have the property of not including (explicitly or implicitly) a
contradiction:

Definition 16 For all ϕ ∈ FS , Φ ⊆ FS :
ϕ is consistent :iff there is no ψ ∈ FS with: {ϕ} ` ψ, {ϕ} ` ¬ψ.

Φ is consistent :iff there is no ψ ∈ FS with: Φ ` ψ, Φ ` ¬ψ.

E.g. P (c) is consistent, because:
assume {P (c)} ` ψ, {P (c)} ` ¬ψ
=⇒ {P (c)} � ψ, {P (c)} � ¬ψ (Soundness theorem)
=⇒ there are no M, s with M, s � P (c)
But this is false: take e.g. D = {1}, I(c) = 1, I(P) = D
⇒ M � P (c).

66

Lemma 8 Φ is consistent iff there is a ψ ∈ FS , such that Φ 0 ψ.

Proof. We show:
Φ is not consistent ⇐⇒ there is no ψ ∈ FS , such that Φ 0 ψ

⇐⇒ for all ψ ∈ FS : Φ ` ψ
“⇐:” since Φ ` ψ, Φ ` ¬ψ =⇒ Φ is not consistent X

“⇒:” assume Φ is not consistent,
i.e., Φ ` ϕ, Φ ` ¬ϕ for some ϕ ∈ FS :

Thus 1. . . . 1. . . .
2. . . . 2. . . .
...

...
...

...
m. Γϕ n. Γ′¬ϕ︸ ︷︷ ︸ ︸ ︷︷ ︸
derivation 1 (Γ ⊆ Φ) derivation 2 (Γ′ ⊆ Φ)

Now: 1. . . .
...

...
m. Γϕ

}
derivation 1

m+ 1. . . .
...

...
m+ n. Γ′¬ϕ

}
derivation 2

m+ n+ 1. ΓΓ′ϕ (Ant.) with m.
m+ n+ 2. ΓΓ′¬ϕ (Ant.) with m+n.
m+ n+ 3. ΓΓ′ψ (Triv.) with m+n+1., m+n+2.

Since Γ ∪ Γ′ ⊆ Φ =⇒ Φ ` ψ for arbitrary ψ ∈ FS X

Moreover:

Lemma 9 Φ is consistent iff every finite subset Φ′ ⊆ Φ is consistent.

Proof. Immediate from our definitions.

67

The soundness theorem above was formulated for ` und �. But there is a
corresponding version for consistency and satisfiabillity (in fact we already
sketched the proof of this second version when we showed that {P (c)} is
consistent on p. 66):

Corollary 2 (Soundness Theorem: Second Version)
For all Φ ⊆ FS : if Φ is satisfiable, then Φ is consistent.

Proof.
We show: Φ is not consistent =⇒ Φ is not satisfiable.

Assume that Φ is not consistent:
=⇒ Φ ` ψ, Φ ` ¬ψ (by definition)
=⇒ Φ � ψ, Φ � ¬ψ (Soundness theorem)
=⇒ there are no M, s with M, s � Φ,
i.e., Φ is not satisfiable.

Furthermore, we can show the proof-theoretic counterpart of lemma 5:

Lemma 10 For all Φ ⊆ FS , ϕ ∈ FS :

1. ϕ is provable iff ∅ ` ϕ.

2. Φ ` ϕ iff Φ ∪ {¬ϕ} is not consistent.

3. ϕ is provable iff ¬ϕ is not consistent.

Proof.

1. Follows directly from the definitions. X

2. (⇒) Assume that Φ ` ϕ:

Obviously, this implies: Φ ∪ {¬ϕ} ` ϕ.

Furthermore: Φ ∪ {¬ϕ} ` ¬ϕ (by the Ass. rule)

=⇒ Φ ∪ {¬ϕ} is not consistent. X

(⇐) Assume that Φ ∪ {¬ϕ} is not consistent:

=⇒ every formula is derivable from Φ ∪ {¬ϕ} (Lemma 8)

=⇒ Φ ∪ {¬ϕ} ` ϕ,

i.e., there is a derivation of the following form:

68

1. . . .
...

...
m. Γ¬ϕ ϕ (Γ ⊆ Φ)

Extend: m+1. Γϕ ϕ (Ass.)
m+2. Γϕ (PC) with m+1., m.

=⇒ Γ ` ϕ
=⇒ Φ ` ϕ X

3. Consider Φ = ∅ and apply 2. and 1. X

We did not prove the semantic counterpart of the following lemma (since it
would be trivial):

Lemma 11 For all Φ ⊆ FS , ϕ ∈ FS :
If Φ is consistent, then Φ ∪ {ϕ} is consistent or Φ ∪ {¬ϕ} is consistent.

Proof.
Assume that Φ ∪ {ϕ}, Φ ∪ {¬ϕ} are both not consistent.
Φ ∪ {¬ϕ} is not consistent =⇒ Φ ` ϕ (by 2. of lemma 10)
Φ ∪ {ϕ} is not consistent =⇒ Φ ` ¬ϕ (proof analogous to 2. of lemma 10)
=⇒ Φ is not consistent.

Remark 16

• We do not consider a proof-theoretic counterpart of the semantic notion
of logical equivalence.

• Our proof-theoretic concepts are actually again relativized to a sym-
bol set S (S-sequent calculus, S-derivability,. . .), just as our semantic
concepts.

Here is a lemma where we make this implicit reference to symbol sets explicit
(we need this lemma later in the proof of the completeness theorem):

69

Lemma 12 Let S0 ⊆ S1 ⊆ S2 ⊆ . . . be a chain of symbol sets.
Let Φ0 ⊆ Φ1 ⊆ Φ2 ⊆ . . . be a chain of sets of formulas, such that:
For all n ∈ {0, 1, 2, . . .} : Φn is a set of formulas over the symbol set Sn and
Φn is Sn-consistent (i.e., consistent in the sequent calculus for formulas in
FSn).
Let finally S =

⋃
n∈{0,1,2,...} Sn, Φ =

⋃
n∈{0,1,2,...}Φn.

It follows: Φ is S-consistent.

Proof.
Let the symbol sets and formula sets be given as indicated above.
Assume that Φ is not S-consistent:
=⇒ there is a Ψ ⊆ Φ with Ψ finite, Ψ not S-consistent (by lemma 9)
=⇒ there is a k ∈ {0, 1, 2, . . .}, such that Ψ ⊆ Φk (since Ψ is finite).

Ψ is not S-consistent, therefore for some ψ ∈ FS : (i) there is an S-derivation
of ψ from Ψ, (ii) there is an S-derivation of ¬ψ from Ψ.

But in these two sequent calculus derivations only finitely many symbols in
S can occur. Thus there is an m ∈ {0, 1, 2, . . .}, such that Sm contains all
the symbols in these two derivations.
Without restricting generality, we can assume that m ≥ k:
=⇒ Ψ is not Sm-consistent
=⇒ Φk is not Sm-consistent
Since m ≥ k it also follows that Φk ⊆ Φm

=⇒ Φm is not Sm-consistent: contradiction!

=⇒ Φ is S-consistent.

70

4.8 Problem Set 5

1. (This problem counts for award of CREDIT POINTS.)

Are the following rules correct?

(a)
Γ ϕ1 ψ1

Γ ϕ2 ψ2

Γ ϕ1 ∨ ϕ2 ψ1 ∨ ψ2

(b)
Γ ϕ1 ψ1

Γ ϕ2 ψ2

Γ ϕ1 ∨ ϕ2 ψ1 ∧ ψ2

2. Derive the following (auxiliary) rules from the rules of the sequent
calculus:

(a)
Γ ϕ
Γ ¬¬ϕ

(b)
Γ ¬¬ϕ
Γ ϕ

(c)
Γ ϕ
Γ ψ
Γ ϕ ∧ ψ

(d)
Γ ϕ ψ
Γ ϕ→ ψ

(e)
Γ ϕ ∧ ψ
Γ ϕ

(f)
Γ ϕ ∧ ψ
Γ ψ

3. Are the following rules correct?

(a)
ϕ ψ
∃xϕ ∃xψ

(b)
Γ ϕ ψ
Γ ∀xϕ ∃xψ

71

4. Derive the following (auxiliary) rules from the rules of the sequent
calculus:

(a)
Γ ∀xϕ
Γ ϕ t

x

(b)
Γ ∀xϕ
Γ ϕ

(c)
Γ ϕ t

x
ψ

Γ ∀xϕ ψ

(d)
Γ ϕ y

x

Γ ∀xϕ if y is not free in the sequent Γ ∀xϕ.

(e)
Γ ϕ ψ
Γ ∀xϕ ψ

(f)
Γ ϕ
Γ ∀xϕ if x is not free in the sequent Γ.

(Remark: ∀xϕ is to be regarded as ¬∃x¬ϕ in the problems above.)

72

5 The Completeness Theorem and Its Con-

sequences

Here is the idea of the proof:

Completeness theorem: For all Φ, ϕ: if Φ � ϕ then Φ ` ϕ.

Let Φ, ϕ be such that Φ � ϕ. Assume Φ 0 ϕ:
=⇒ Φ ∪ {¬ϕ} is consistent (by 2. of lemma 10)
=⇒ Φ ∪ {¬ϕ} satisfiable (from (?) below)

But: Φ ∪ {¬ϕ} is not satisfiable by 2. of lemma 5 (since Φ � ϕ)
Contradiction!
=⇒ Φ ` ϕ

So we have to show: For all Φ: if Φ is consistent, then Φ is satisfiable. (?)

This means that for consistent Φ we must prove that M, s exist, such that:
M, s � Φ.

We divide this existence proof into two parts:

5.1 The Satisfiability of Maximally Consistent Sets of Formulas with In-
stances

5.2 The Extension of Consistent Sets of Formulas to Maximally Consistent
Sets of Formulas with Instances

By (i) applying 5.2, then (ii) applying 5.1 – which is going to give us (?) –
and finally (iii) applying the proof strategy from above, we will be done.

73

5.1 The Satisfiability of Maximally Consistent Sets of
Formulas with Instances

Let S be a symbol set that we keep fixed.

Definition 17 Let Φ ⊆ FS :

• Φ is maximally consistent iff

Φ is consistent and for all ϕ ∈ FS : Φ ` ϕ or Φ ` ¬ϕ

• Φ contains instances iff

for every formula of the form ∃xϕ ∈ FS there is a t ∈ TS , such that:
Φ ` (∃xϕ→ ϕ t

x
)

Now let Φ be maximally consistent with instances (i.e., it is maximally con-
sistent and contains instances).

To show: Φ is satisfiable.

Let us consider an example first: let Φ = {P (c1)}.
=⇒ Φ is consistent (since it is satisfiable – apply corollary 2).

But: Φ is not maximally consistent.

E.g., Φ 0 P (c2),

Φ 0 ¬P (c2)

because Φ∪ {¬P (c2)}, Φ∪ {P (c2)} are consistent since they are
satisfiable.

Furthermore: Φ does not contain instances for all formulas (only for some).

E.g., Φ 0 (∃x¬P (x)→ ¬P (t)︸ ︷︷ ︸
¬P (x) t

x

) for arbitrary t ∈ TS

Since: choose any model of Φ ∪ {¬ (∃ x ¬P (x)︸ ︷︷ ︸
true

→ ¬P (t)︸ ︷︷ ︸
false

)

︸ ︷︷ ︸
false

}; such

a model exists and and thus this formula set is consistent.

74

But e.g. Φ ` (∃xP (x)→ P (c1)), since Φ ` P (c1) and thus
by the ∨-introduction rule in the consequent: Φ ` ¬∃xP (x) ∨ P (c1)︸ ︷︷ ︸

∃xP (x)→P (c1)

Another example:

Let M, s be such that for every d ∈ D there is a t ∈ TS such that:
V alM,s(t) = d (which implies that D is countable).

Consider Φ = {ϕ ∈ FS |M, s � ϕ}
=⇒ Φ is consistent and Φ ` ϕ or Φ ` ¬ϕ for arbitrary ϕ ∈ FS .
(Since: M, s � ϕ or M, s � ¬ϕ =⇒ ϕ ∈ Φ or ¬ϕ ∈ Φ)

=⇒ Φ is maximally consistent!

Furthermore:
For all formulas ∃xϕ there is a t, such that: Φ ` (∃xϕ→ ϕ t

x
)

Because:

Case 1: M, s 2 ∃xϕ
⇒M, s � ∃xϕ→ ϕ

t

x︸ ︷︷ ︸ for all t ∈ TS

∃xϕ→ ϕ t
x
∈ Φ X

Case 2: M, s � ∃xϕ
=⇒ there is a d ∈ D, such that: M, s d

x
� ϕ, and

d = V alM,s(t) for some t ∈ Ts (by assumption)

=⇒ there is a t ∈ Ts, such that: M, s
V alM,s(t)

x
� ϕ

=⇒ there is a t ∈ Ts, such that: M, s � ϕ t
x

(substitution lemma)
=⇒ there is a t ∈ Ts, such that: M, s � ∃xϕ→ ϕ t

x

For such a t it follows: ∃xϕ→ ϕ t
x
∈ Φ X

So Φ is actually maximally consistent with instances.

Now we that we have seen an example of a maximally consistent set of
formulas that contains instances, let us consider such sets in general.
We will show that every such set is satisfiable.

75

So let Φ be a maximally consistent formula set with instances.

Wanted: M, s with M, s � Φ
Thus, if e.g. P (f(x)) ∈ Φ

=⇒M, s � P (f(x))⇔ I(f)(s(x)) ∈ I(P)

Problems:
1. What should we choose to be the members of the domain D?
2. How shall we define I, s?

Suggestions:

• Let us define D to be TS ! (This is about problem 1.)

• Every term is assumed to “denote” itself! (This is about problem 2.)

• I(P) is defined in accordance with Φ (This is also about problem 2.)

I.e., first attempt: let

D := TS
I(c) := c
I(f)(t1, . . . , tn) := f(t1, . . . , tn)
I(P) := {(t1, . . . , tn)|Φ ` P (t1, . . . , tn)} (so I(P) = IΦ(P), i.e., I depends on Φ)
s(x) := x

⇒ Assume P (f(x)) ∈ Φ
⇒ Φ ` P (f(x))
⇒ f(x)︸︷︷︸

=I(f)(s(x))

∈ I(P) (by definition of I(P), I(f), and s(x))

⇒M, s � P (f(x)) X

But there is yet another problem:

assume f(x) ≡ f(y) ∈ Φ (for x 6= y)
⇒ V alM,s(f(x)) = I(f)(s(x)︸︷︷︸

=x

) = f(x) (for M, s defined as above)

V alM,s(f(y)) = I(f)(s(y)︸︷︷︸
=y

) = f(y)

BUT: f(x) 6= f(y)!
⇒M, s 2 f(x) ≡ f(y), although f(x) ≡ f(y) ∈ Φ!

76

Improved attempt:
We must “adapt” M, s to ≡.
I.e., let us consider equivalence classes of terms rather than terms themselves
as members of our intended domain: for t1, t2 ∈ TS , let

t1 ∼ t2 ⇔ Φ ` t1 ≡ t2 (i.e., ∼ = ∼Φ)

It follows:

Lemma 13

1. ∼ is an equivalence relation on TS .

2. ∼ is compatible with functions signs and predicates in S, i.e.,

• t1 ∼ t′1, . . . , tn ∼ t′n ⇒ f(t1, . . . , tn) ∼ f(t′1, . . . , t
′
n)

• t1 ∼ t′1, . . . , tn ∼ t′n ⇒ Φ ` P (t1, . . . , tn)⇔ Φ ` P (t′1, . . . , t
′
n)

Proof.

1. • t ∼ t, since Φ ` t ≡ t (Refl.) X

• Assume t1 ∼ t2 =⇒ Φ ` t1 ≡ t2

⇒ Φ ` t2 ≡ t1 (Symm.) ⇒ t2 ∼ t1 X

• Assume t1 ∼ t2, t2 ∼ t3 =⇒ Φ ` t1 ≡ t2, Φ ` t2 ≡ t3

⇒ Φ ` t1 ≡ t3 (Trans.) ⇒ t1 ∼ t3 X X

2. • Assume t1 ∼ t′1, . . . , tn ∼ t′n =⇒ Φ ` t1 ≡ t′1, . . . ,Φ ` tn ≡ t′n
⇒ Φ ` f(t1, . . . , tn) ≡ f(t′1, . . . , t

′
n) (see p.65)

⇒ f(t1, . . . , tn) ∼ f(t′1, . . . , t
′
n) X

• Assume t1 ∼ t′1, . . . , tn ∼ t′n
...

analogously for P (t1, . . . , tn) and P (t′1, . . . , t
′
n) (see p.64) X X

77

So we define:

DΦ := {[t]∼|t ∈ TS}
IΦ(c) := [c]∼
IΦ(f) ([t1]∼ , . . . , [tn]∼) := [f(t1, . . . , tn)]∼
IΦ(P) := {([t1]∼ , . . . , [tn]∼) |Φ ` P (t1, . . . , tn)}
MΦ := (DΦ, IΦ)

sΦ(x) := [x]∼

(this is well-defined, since the definitions are independent of the choice of the
representatives t1, . . . , tn as can be seen from 2. of lemma 13).

One can show:

Lemma 14 For all Φ ⊆ FS :

1. For all t ∈ TS : V alMΦ,sΦ(t) = [t]∼

2. For all atomic formulas ϕ ∈ FS :

MΦ, sΦ � ϕ iff Φ ` ϕ

3. For all ϕ ∈ FS , for all pairwise distinct variables x1, . . . , xn:

MΦ, sΦ � ∃x1∃x2 . . . ∃xn ϕ iff
there are terms t1, . . . , tn ∈ TS such that MΦ, sΦ � ϕ t1,...,tn

x1,...,xn
.

(Note that our assumption that Φ is maximally consistent and contains in-
stances is not yet needed in order to derive the claims of this lemma.)

Proof.

1. By induction over S-terms:

• t = c : V alMΦ,sΦ(c) = IΦ(c) = [c]∼ X (def.)

• t = x : V alMΦ,sΦ(x) = sΦ(x) = [x]∼ X (def.)

• t = f(t1, . . . , tn)

⇒ V alMΦ,sΦ(f(t1, . . . , tn)) = IΦ(f)
(
V alMΦ,sΦ(t1), . . . , V alMΦ,sΦ(tn)

)
= IΦ(f) ([t1]∼ , . . . , [tn]∼) (by inductive assumption)

= [f(t1, . . . , tn)]∼ (def. of IΦ) X X

78

2. • MΦ, sΦ � t1 ≡ t2 ⇐⇒ V alMΦ,sΦ(t1) = V alMΦ,sΦ(t2)

⇐⇒ [t1]∼ = [t2]∼ (by 1.)

⇐⇒ t1 ∼ t2 ⇐⇒ Φ ` t1 ≡ t2 (def. of ∼) X

• MΦ, sΦ � P (t1, . . . , tn) (for P 6= ≡)

⇐⇒
(
V alMΦ,sΦ(t1), . . . , V alMΦ,sΦ(tn)

)
∈ IΦ(P)

⇐⇒ ([t1]∼ , . . . , [tn]∼) ∈ IΦ(P) (by 1.)

⇐⇒ Φ ` P (t1, . . . , tn) (def. of IΦ) X X

3. MΦ, sΦ � ∃x1∃x2 . . . ∃xn ϕ
⇐⇒ there are d1︸︷︷︸

=[t1]∼

, . . . , dn︸︷︷︸
=[tn]∼

∈ DΦ with

MΦ, sΦ d1,...,dn
x1,...,xn

� ϕ

(the order in which s is manipulated is irrelevant, since xi 6= xj for

i 6= j)

⇐⇒ there are t1, . . . , tn ∈ TS with

MΦ, sΦ [t1]∼,...,[tn]∼
x1,...,xn

� ϕ

⇐⇒ there are t1, . . . , tn ∈ TS with

MΦ, sΦ V al
MΦ,sΦ

(t1),...,V al
MΦ,sΦ

(tn)

x1,...,xn
� ϕ (by 1.)

⇐⇒ there are t1, . . . , tn ∈ TS with

MΦ, sΦ � ϕ t1,...,tn
x1,...,xn

(substitution lemma) X

So now we know:

MΦ, sΦ satisfies all atomic formulas that are derivable from Φ (by 2. of the
last lemma). Let us now extend this to all formulas in FS :

Here we use: • maximal consistency of Φ in order to derive this for ¬,∨-formulas
• Φ’s having instances in order to derive this for ∃-formulas

What we need to show:

Lemma 15 For all maximally consistent Φ ⊆ FS with instances, for all
ϕ, ψ ∈ FS :

79

1. Φ ` ¬ϕ iff Φ 0 ϕ

2. Φ ` ϕ ∨ ψ iff Φ ` ϕ or Φ ` ψ

3. Φ ` ∃xϕ iff there is a t ∈ TS such that: Φ ` ϕ t
x

Proof.

1. From Φ being maximally consistent follows: Φ ` ϕ or Φ ` ¬ϕ
From Φ being maximally consistent we have: it is not the case that
both Φ ` ϕ and Φ ` ¬ϕ
⇒ So we are done. X

2. (⇒) Assume Φ ` ϕ ∨ ψ
1.) If Φ ` ϕ then we are done.

2.) If Φ 0 ϕ, then Φ ` ¬ϕ (by maximal consistency)

⇒ Φ ` ψ (by disjunctive syllogism) X

(⇐) Assume Φ ` ϕ or Φ ` ψ

⇒ Φ ` ϕ ∨ ψ (∨-Con.) X X

3. (⇒) Assume Φ ` ∃xϕ
Since Φ contains instances, there is a t with: Φ ` ∃xϕ→ ϕ t

x

By modus ponens: Φ ` ϕ t
x
X

(⇐) Assume Φ ` ϕ t
x

for some t ∈ TS
⇒ Φ ` ∃xϕ (∃-Con.) X X

So finally we have:

Theorem 4 (Henkin’s Theorem)
For all maximally consistent Φ ⊆ FS with instances, for all ϕ ∈ FS :
MΦ, sΦ � ϕ iff Φ ` ϕ

Proof. By induction over S-formulas:

• Atomic formulas: X (2. of lemma 14)

80

• ϕ = ¬ψ:

MΦ, sΦ � ¬ψ
⇐⇒MΦ, sΦ 2 ψ
⇐⇒ Φ 0 ψ (by inductive assumption)

⇐⇒ Φ ` ¬ψ X (1. of lemma 15)

• ϕ = ψ ∨ ρ:

MΦ, sΦ � ψ ∨ ρ
⇐⇒MΦ, sΦ � ψ or MΦ, sΦ � ρ

⇐⇒ Φ ` ψ or Φ ` ρ (by inductive assumption)

⇐⇒ Φ ` ψ ∨ ρ X (2. of lemma 15)

• ϕ = ∃xψ:

MΦ, sΦ � ∃xψ
⇐⇒ there is a t ∈ TS with: MΦ, sΦ � ψ t

x
(3. of lemma 14)

⇐⇒ there is a t ∈ TS with: Φ ` ψ t
x

(by inductive assumption)

⇐⇒ Φ ` ∃xψ X (3. of lemma 15)

81

5.2 Extending Consistent Sets of Formulas to Maxi-
mally Consistent Sets of Formulas with Instances

Idea of the proof:

extend (1st lemma) ↓ Φ consistent (and only finitely many free variables)

Ψ consistent with instances (Φ ⊆ Ψ)

extend (2nd lemma)↓ Θ maximally consistent with instances (Ψ ⊆ Θ)

conclude (from 5.1) ↓ Θ satisfiable (⇒ Φ ⊆ Θ satisfiable)

Afterwards: get rid of restriction to finitely many free variables!

Lemma 16 Let Φ ⊆ FS , such that Φ is consistent and the set of variables
that occur freely in some formula in Φ is finite:
there is a Ψ ⊆ FS with Φ ⊆ Ψ, such that Ψ constains instances and Ψ is
consistent.

Proof. We know: FS is countable (lemma 2)
⇒ the set of formulas in FS that begin with ∃ is countable
So let ∃x0ϕ0, ∃x1ϕ1, ∃x2ϕ2, . . . be an enumeration of existentially quantified
formulas in FS
(note that each “xi” is a metavariable that stands for some of our first-order
variables vj – in particular, xi is not necessarily identical to vi!)
Now we define “instances” for this sequence of formulas:

ψn := ∃xnϕn → ϕn
yn
xn

where yn is the variable vk with the least index k such that

vk does not occur freely in Φ ∪ {ψ0, . . . , ψn−1}︸ ︷︷ ︸
Φn

∪{∃xn ϕn}

Such a variable yn – i.e., vk – does exist:

there are only finitely many free variables in Φn ∪ {∃xn ϕn}
(since there are only finitely many variables in Φ)

Now let Ψ be defined as follows:

Ψ :=
⋃
n∈N0

Φn

82

⇒ • Φ ⊆ Ψ ⊆ FS X
• Ψ contains instances X
• Ψ is consistent

Because:

(Φ =)Φ0 ⊆ Φ1 ⊆ Φ2 ⊆ · · · and Ψ =
⋃
n∈N0

Φn

(Corresponding symbol sets: S0 ⊆ S1 ⊆ S2 ⊆ · · · with Si := S
for all i ≥ 0)

=⇒ So we can apply lemma 12:

If all formula sets Φn are consistent with respect to Sn = S, then
the same holds for Ψ =

⋃
n∈N0

Φn.

But the sets Φn are indeed consistent as induction over n shows:

induction basis: Φ0 = Φ is consistent (by assumption)X

inductive assumption: Φn is consistent

inductive step (n→ n+ 1):

assume for contradiction that Φn+1 is not consistent
(where Φn+1 = Φn ∪ {ψn}):
=⇒ every formula in FS is derivable from Φn+1 (by
lemma 8)

In particular: let ϕ be a sentence in FS
=⇒ Φn+1 ` ϕ
Thus: there is a Γ ⊆ Φn, such that the sequent Γψnϕ
is derivable in the sequent calculus.

Consider such a derivation:

1. . . .
...

...
m. Γ ψn︸︷︷︸ϕ

∃xnϕn → ϕn
yn
xn

= (¬∃xnϕn ∨ ϕn ynxn) by def.

Extend derivation:

m+1. Γ¬∃xnϕn ¬∃xnϕn (Ass.)
m+2. Γ¬∃xnϕn (¬∃xnϕn ∨ ϕn ynxn) (∨-Con.) with m+1.

m+3. Γ¬∃xnϕn (¬∃xnϕn ∨ ϕn ynxn) ϕ (Ant.) with m.

m+4. Γ¬∃xnϕn ϕ (CS) with m+3., m+2.

83

... (analogously)

m+8. Γ ϕn
yn
xn

ϕ . . .

m+9. Γ ∃xnϕn ϕ (∃-Ant.) with m+8.
since yn is not in free(Γ ∃xnϕn ϕ):
yn /∈ free(Γ ∃xnϕn) by choice of yn (Γ ⊆ Φn)
and yn /∈ free(ϕ), since ϕ is a sentence

m+10. Γϕ (PC) with m+9., m+4.

so: for both, say, ϕ = ∃v0v0≡v0 and for ϕ = ¬∃v0v0≡v0

we can show: ϕ is derivable from Φn

=⇒ Φn is not consistent, which contradicts the induc-
tive assumption

=⇒ Φn+1 is consistent

=⇒ By induction: every set Φn is consistent =⇒ Ψ is consistentX

Lemma 17 Let Ψ ⊆ FS with Ψ consistent:
there is a Θ ⊆ FS such that Ψ ⊆ Θ and Θ is maximally consistent.

(Note that there is no assumption on instances.)

Proof.
Let ϕ0, ϕ1, ϕ2, . . . be an enumeration of the formulas in FS (such an enumer-
ation exists since FS is countable by lemma 2).
Now define:

Θ0 := Ψ

and for n ≥ 0 : Θn+1 :=

{
Θn ∪ {ϕn} if Θn ∪ {ϕn} consistent
Θn else

Let Θ :=
⋃
n∈N0

Θn: so

• Ψ ⊆ Θ ⊆ FS X

• Θ consistent: analogous to before X

(Θ0 ⊆ Θ1 ⊆ Θ2 ⊆ · · · , Θ =
⋃
n∈N0

84

Θn are consistent by definition

=⇒ as before: Θ is consistent by lemma 12)

• Θ is maximal:

Since:

Let ϕ ∈ FS be chosen arbitrarily

Case 1: Θ ` ¬ϕ X
Case 2: Θ 0 ¬ϕ
=⇒ Θ ∪ {ϕ} is consistent (proof analogous to 2. of lemma
10)

By enumeration there is an n ∈ N0 with ϕ = ϕn

=⇒ Θ ∪ {ϕn} consistent

=⇒ Θn ∪ {ϕn} consistent (because Θn ⊆ Θ)

=⇒ Θn+1 = Θn ∪ {ϕn} (since consistent)

=⇒ ϕ = ϕn ∈ Θn+1 ⊆ Θ

=⇒ ϕ ∈ Θ

=⇒ Θ ` ϕ X
In both cases: Θ ` ϕ or Θ ` ¬ϕ
=⇒ Θ is maximal X

Corollary 3 Let Φ ⊆ FS , Φ consistent with only finitely many free variables
in Φ:
It follows that Φ is satisfiable.

Proof.
Extend Φ to consistent Ψ with instances according to lemma 16,
extend Ψ to maximally consistent Θ according to lemma 17
(since Ψ ⊆ Θ =⇒ Θ contains instances):
but this implies that Φ ⊆ Θ is satisfiable by Henkin’s theorem.

85

Now we are finally in the position to prove (one version of) the completeness
theorem:

Theorem 5 (Completeness Theorem)
For all Φ ⊆ FS it holds:

If Φ is consistent, then Φ is satisfiable.

Proof. Since the set of free variables in Φ is perhaps infinite, we cannot
apply corollary 3 directly in order to prove the completeness theorem.

So we have to make a small “detour”:

Let S ′ := S ∪ {c0, c1, c2, . . .}, where c0, c1, c2, . . . are pairwise distinct “new”
constants that are not yet contained in S.

Let furthermore ϕ′ := ϕ
c0,c1,...,cnϕ
v0,v1,...,vnϕ

(for ϕ ∈ FS)

where nϕ is minimal such that free(ϕ) ⊆ {v0, . . . , vnϕ}
(this substitution obviously has no effect on variables that only occur in ϕ
as bound variables).

Finally, let Φ′ := {ϕ′|ϕ ∈ Φ}.
Note: Φ′ is a set of sentences (over the symbol set S ′).
Subsequent proof structure:

Φ is S-consistent by assumption,
=⇒ Φ′ is S ′-consistent
=⇒ Φ′ is satisfiable (there is an S ′-model)
=⇒ Φ is satisfiable (there is an S-model)

Now we will show these claims in a step-by-step manner:

• Φ is by assumption S-consistent, therefore Φ′ is S ′-consistent,

because:

1. Let Ψ ⊆ Φ′, Ψ finite

=⇒ Ψ = {ϕ′1, . . . , ϕ′n} for ϕ1, . . . , ϕn ∈ Φ

Since {ϕ1, . . . , ϕn} ⊆ Φ

=⇒ {ϕ1, . . . , ϕn} S-consistent

{ϕ1, . . . , ϕn} can only contain finitely many variables
(because it is a finite set)

86

=⇒ {ϕ1, . . . , ϕn} satisfiable (by corollary 3)

i.e., there is an S-model M and a variable assignment s over M,
such that M, s � {ϕ1, . . . , ϕn}
Now we extend M to an S ′-model M′ = (D′, I′) where:

D′ := D

I′ |S ≡ I

I′(ci) := s(vi) (for “new” ci)

It follows that for all ϕ ∈ FS :

M, s � ϕ ⇐⇒ M, s
s(v0),...,s(vnϕ)

v0,...,vnϕ
� ϕ

⇐⇒ M′, s
s(v0),...,s(vnϕ)

v0,...,vnϕ
� ϕ (coincidence lemma)

⇐⇒ M′, s
I′(c0),...,I′(cnϕ)

v0,...,vnϕ
� ϕ (def. I′)

⇐⇒ M′, s
V alM′,s(c0),...,V alM′,s(cnϕ)

v0,...,vnϕ
� ϕ

⇐⇒ M′, s � ϕ
c0,...,cnϕ
v0,...,vnϕ

(substitution lemma)

⇐⇒ M′, s � ϕ′ (def. ϕ′)

Since M, s � {ϕ1, . . . , ϕn}
=⇒M′, s � {ϕ′1, . . . , ϕ′n}︸ ︷︷ ︸

Ψ

=⇒ Ψ is satisfiable (it has an S ′-model)

=⇒ Ψ is S ′-consistent (by corollary 2)

2. We found that every finite subset of Φ′ is S ′-consistent

=⇒ Φ′ is S ′-consistent (by lemma 9)

• Hence, Φ′ is S ′-consistent and contains only finitely many free variables
(namely 0)

=⇒ Φ′ is satisfiable, i.e., there is an S ′-model M′, such that M′ � Φ′

(as follows from corollary 3).

We do not need to refer to a variable assignment, since Φ′ only contains
sentences.

87

• Now we restrict M′ to a model M over S again:

D := D′

I ≡ I′ |S
and we set s(vi) := I′(ci) for all variables vi

As before it follows that: M, s � ϕ⇐⇒M′, s � ϕ′ for all ϕ ∈ FS
Because M′ � Φ′

=⇒M, s � Φ, i.e., Φ is satisfiable.

So we can finalise the plan of our proof and conclude the originally intended
version of the completeness theorem:

Theorem 6 (Completeness Theorem)
For all Φ ⊆ FS , for all ϕ ∈ FS , it holds:

If Φ � ϕ, then Φ ` ϕ.

I.e.: if ϕ follows logically (semantically) from Φ, then ϕ is derivable from Φ
on the basis of the sequent calculus; thus the sequent calculus is complete.

This implies immediately:

Remark 17

• ϕ is provable iff ϕ is logically true.

• Φ is consistent iff Φ is satisfiable.

• Since logical consequence and satisfiability are independent of the par-
ticular choice of S, the same must hold for derivability and consistency.

Isn’t that a great result?

88

5.3 Consequences and Applications

We will now turn to two important consequences of the completeness theorem
(and of the methods by which we proved it): the theorem of Loewenheim-
Skolem and the compactness theorem.

Theorem 7 (Loewenheim-Skolem)
For all Φ ⊆ FS :
If Φ is satisfiable, then there are M, s such that M, s � Φ and:
the domain D of M is countable.

Proof.
The proof can be extracted from the proof of the completeness theorem:
Φ is satisfiable
=⇒ Φ consistent
=⇒ Φ′ is consistent, where Φ′ is as in the proof of theorem 5 (consistency
was shown there)
=⇒ Φ′ has a model M′ with a countable domain the members of which are
equivalence classes of the terms of TS′ (by corollary 3 and Henkin’s theorem)
=⇒ Φ is satisfied by M, s where M has a countable domain (as shown in the
proof of theorem 5)

Theorem 8 (Compactness)
For all Φ ⊆ FS , for all ϕ ∈ FS :

1. Φ � ϕ if and only if there is a Ψ ⊆ Φ with Ψ finite and Ψ � ϕ.

2. Φ is satisfiable if and only if for all Ψ ⊆ Φ with Ψ finite: Ψ is satisfiable.

Proof. We already know that the proof-theoretic analogues to these claims
hold (by lemma 7 and lemma 9). But this means we are done by the sound-
ness and the completeness theorem.

The theorem of Loewenheim-Skolem and the compactness theorem are im-
portant tools in model theory and have several surprising implications and
applications.

89

Example:

Consider the first-order theory of set theory:
Let Sset = { ∈︸︷︷︸

binary predicate

}

(+ optional: constant ∅
binary predicate ⊆
binary functions signs ∩, ∪, { , }, . . .)

Set of set-theoretic definitions and axioms:

1. Definitions:

(a) Definition of ∅:

∀y(∅ = y ↔ ∀z ¬z ∈ y)

(b) Definition of ⊆:

∀x∀y(x ⊆ y ↔ ∀z(z ∈ x→ z ∈ y))

(c) Definition of { , }:
∀x∀y∀z({x, y} = z ↔
∀w(w ∈ z ↔ w = x ∨ w = y))

(and let us abbreviate {y, y} by means of {y})
(d) Definition of ∪:

∀x∀y∀z(x ∪ y = z ↔
∀w(w ∈ z ↔ (w ∈ x ∨ w ∈ y)))

(e) Definition of ∩:

∀x∀y∀z(x ∩ y = z ↔
∀w(w ∈ z ↔ (w ∈ x ∧ w ∈ y)))

2. Axioms:

(a) Axiom of Extensionality:

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)

(“Two sets that have the same members are equal”)

90

(b) Axiom Schema of Separation:

∀x1 . . . ∀xn∀x∃y∀z(z ∈ y ↔
z ∈ x ∧ ϕ[z, x1, . . . , xn])

(“For every set x and for every property E that is expressed
by a formula ϕ with free variables z, x1, . . . , xn there is a set
{z ∈ x |z has the property E }”)

(c) Axiom of Pairs:

∀x∀y∃z∀w(w ∈ z ↔ w = x ∨ w = y)

(“For every two sets x, y there is the pair set {x, y}”)

(d) Axiom of Unions:

∀x∃y∀z(z ∈ y ↔ ∃w(w ∈ x ∧ z ∈ w))

(“For every set x there is a set y, which contains precisely the
members of the members of x”)

(e) Powerset Axiom:

∀x∃y∀z(z ∈ y ↔ z ⊆ x)

(“For every set x there is the power set y of x”)

(f) Axiom of Infinity:

∃x(∅ ∈ x ∧ ∀y(y ∈ x→ y ∪ {y} ∈ x))

(“There is an infinite set, namely the set that contains ∅, {∅},
{∅, {∅}},. . . as members”)

(g) Axiom of Choice:

∀x(¬ ∅ ∈ x ∧ ∀u∀v(u ∈ x ∧ v ∈ x ∧ ¬u ≡ v → u ∩ v ≡ ∅) →
∃y∀w(w ∈ x→ ∃!z z ∈ w ∩ y))

(“For every set x that has non-empty and pairwise disjoint sets as
its members there is a (choice) set y that contains for each set in
x precisely one member”)

Remark: For some purposes the additional so-called Axiom of Replacement
is needed as well.

91

Practically all theorems of standard mathematics can be derived from this
set of definitions and axioms.

At the same time, Loewenheim-Skolem tells that if this set of definitions and
axioms is consistent, then it has a model with a countable domain!!!!

Another example – now we consider arithmetic:

Let Sarith = {0, 1, +, ·};
standard model of arithmetic: (N0, I) with I as expected
(so I(0) = 0, I(+) = + on N0, . . .).

Let Φarith be the set of Sarith-sentences that are satisfied by this model, i.e.:
Φarith︸ ︷︷ ︸

“arithmetic”

= {ϕ ∈ FSarith
|ϕ sentence, (N0, I) � ϕ}

Now consider

Ψ = Φarith ∪ {¬ x ≡ 0, ¬ x ≡ 1, ¬ x ≡ 1 + 1, ¬ x ≡ (1 + 1) + 1, . . .}

It holds that every finite subset of Ψ is satisfiable:
just take the standard model of artithmetic and choose s in the way that
s(x) is a sufficiently large natural number (for a given finite subset of Ψ, s(x)
has to be large enough to be greater than any number denoted by any of the
right-hand sides of the negated equations in the subset).

By the compactness theorem, this implies: Ψ is satisfiable, i.e., there is a
model M′ and a variable assignment s′, such that M′, s′ � Ψ.

It follows:

s′(x) 6= V alM′,s′(0), since ¬ x ≡ 0 ∈ Ψ
s′(x) 6= V alM′,s′(1), since ¬ x ≡ 1 ∈ Ψ
s′(x) 6= V alM′,s′(1+1), since ¬ x ≡ 1+1 ∈ Ψ
...

If we finally identify the objects V alM′,s′(1+ . . .+1) with our standard natural
numbers, we get:
There exists a model of the set of true arithmetical sentences, such that the
domain of this model contains a “new number” s′(x) that is different from
any of the “old” natural numbers 0, 1, 2, 3, . . .!!!!

92

5.4 Problem Set 6

1. Let S be an arbitrary symbol set.

Let Φ = {v0 ≡ t |t ∈ TS } ∪ {∃v1∃v2¬ v1 ≡ v2}.
Show:

• Φ is consistent

• there is no formula set Ψ ⊆ FS with Ψ ⊇ Φ, such that Ψ is
consistent and contains instances.

2. (This problem counts for award of CREDIT POINTS.)
Explain why the following logical implication holds:

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y) �

∀x∀y(∀z(z ∈ x↔ z ∈ y)↔ x = y)

3. Prove: A map with countably many countries can be coloured by using
at most four colours if and only if each of its finite submaps can be
coloured by using at most four colours.

(Hint: choose a symbol set S in which ever constant represents a coun-
try, in which there are four unary predicates that represent four colours,
and in which there is a binary predicate that stands for the neighbour-
hood relation between countries; represent maps as sets of formulas for
this symbol set; apply the compactness theorem.)

4. Let P be a binary predicate in S.

Prove that the formula

∀x¬P (x, x) ∧ ∀x∀y∀z(P (x, y) ∧ P (y, z)→ P (x, z)) ∧ ∀x∃yP (x, y)

can only be satisfied by infinite models.

5. Prove: there is no formula ϕ, such that for all models M = (D, I) and
for all variable assignments s holds:

M, s � ϕ if and only if D is infinite.

(Hint: use the compactness theorem.)

93

6 The Incompleteness Theorems for Arith-

metic

6.1 Preliminary Remarks

Here is a review of what we have achieved so far:

• we introduced and studied first-order languages;

• then we considered models of such languages and defined semantic con-
cepts in terms of these models;

• we developed the sequent calculus for first-order languages and defined
proof-theoretic notions on the basis of it;

• finally, we proved the soundness and completeness theorems as well as
consequences of the latter (the theorem of Löwenheim-Skolem and the
compactness theorem).

In particular, we know (remember the end of subsection 5.2): for all first-
order formulas ϕ,

ϕ is logically true (i.e., true in all models) iff

ϕ is provable (by means of the sequent calculus)

Is it possible to prove similar results for sets of formulas other than the set
of logically true formulas?

Here is a famous question that was discussed intensively in the 1920s/1930s:
Is there a calculus C of axioms and rules, such that for all arithmetical first-
order formulas ϕ,

ϕ is true in the standard model of arithmetic iff

ϕ is derivable in the calculus C

As was proved by Kurt Gödel in 1931, the answer to this question is NO!
(The same holds for all calculi of axioms and rules that include a “sufficient”
amount of arithmetic.)

94

In a nutshell, the reasons for this fact are as follows:

1. A calculus – later we will say: a recursively axiomatized theory – yields
a mechanical procedure – later we will say: a register program – by
which all formulas that are derivable in the calculus can be generated
– later we will say: register-enumerated – in a systematic manner.

2. If a set of formulas is (i) register-enumerable and (ii) contains for every
formula ϕ of a given first-order language either ϕ or ¬ϕ, then there is a
mechanical procedure that decides – later we will say: register-decides
– for every formula of this language whether it is a member of that set
or not.

3. Every register-decidable set of formulas can be represented by an arith-
metical formula (on the basis of coding formulas by natural numbers
in a mechanical – as we will say: register-computable – way).

4. Assume that the set of arithmetical formulas that are true in the stan-
dard model of arithmetic is identical to the set of formulas that can be
derived in some arithmetical calculus: It follows from 1. that the set of
true arithmetical formulas would be register-enumerable. Furthermore
it is clear that the set of true arithmetical formulas contains for every
arithmetical formula ϕ either ϕ or ¬ϕ, so by 2. the set would have to be
register-decidable. Hence, 3. implies that the set of true arithmetical
formulas would be represented by an arithmetical formula.

5. But the set of formulas that are true in the standard model of arithmetic
is not represented by any arithmetical formula. For otherwise one could
show that there would be an arithmetical sentence that would say about
itself (via coding) “I am not true”: But that sentence would be true
in the standard model of arithmetic if and only if it is not true in the
standard model of arithmetic (contradiction!).

In order to prove this thoroughly it is necessary to define the notions of
register-decidability, register-enumerability, register-computability, and re-
cursive axiomatizability precisely and to study their properties. Historically,
this led to the development of a new branch of mathematical logic: com-
putability theory (or recursion theory).

For the purposes of this course, we will restrict ourselves just to a sketch of
the proof of Gödel’s first incompleteness theorem (the second one will only
be mentioned). Further details can be found in standard textbooks on proof
theory and computability theory.

95

6.2 Formalising “Computer” in Terms of Register Ma-
chine

Our ultimate goal is to prove that the set of first-order arithmetical truths
cannot be generated by means of explicitly stated rules which connect finitely
many premises to a conclusion – unlike the set of formulas of a first-order
language, the set of terms of a first-order language, and the set of logically
true formulas of a first-order language which can all be generated by means
of such rules. In order to prove this result, we have to determine what all the
sets that can be enumerated on the basis of these “mechanical” rules have
in common: roughly, the point will be that a program or a procedure on a
computer would in principle be able – given unrestricted memory and time
– to enumerate the members of any such set in a step-by-step manner. But
in order to do make that precise, we first need a mathematical definition of
“computer program” or “computer procedure”.

Since the 1930s, various such definitions have been put forward in which the
intutive notion of procedure is explained formally in terms of

• Turing machines

• Register machines

• Recursive functions

• the Lambda Calculus
...

As it was proven later, all of these definitions turn out to be essentially
equivalent to each other: if a problem can be solved by a computer procedure
in the one sense, then it can also be solved by a computer procedure in the
other sense, and vice versa; if a set is enumerable by a procedure in the one
sense, then the set is enumerable by a procedure in the other sense, and vice
versa; etc. We are going to focus on one particularly simple formal notion of
“computer program” or “computer procedure”: computer programs in the
sense of so-called register programs that are considered to run sequentially
on corresponding register machines (the latter not being actual computers
but mathematical idealisations thereof).

96

We start by fixing an alphabet A = {a0, . . . , ar} (r ∈ N0).

Intuitively, our register machines can be thought of as (i) storing words over
the alphabet A in their memory, as well as (ii) manipulating the stored words
by simple operations as being determined by the program. We will regard
the memory of a register machine as consisting of certain units or slots which
are members of the set R0, R1, R2, . . . of so-called “registers”: at each step of
a computation of the machine each of the machine’s registers is assumed to
contain exactly one word (such a word may be of arbitrary finite length; the
content of a register may change in the course of the computation). Since
we also want to allow for empty registers, we presuppose that the set A∗ of
words over A includes an “empty word” which we will denote by: �

Here is the exact statement of what we understand by a register program
(over A):

Definition 18 A (register) program P is a finite sequence α0, α2, . . . , αk that
satisfies the following conditions:

• For every i with 0 ≤ i ≤ k, αi is an instruction that starts with the label
i and the remainder of which is of either of the following five forms:

1. LET Rm = Rm + an
(for m,n ∈ N0, n ≤ r)
This is the “Add-Instruction”: Add the symbol an on the right-
hand side of the word in register Rm.

2. LET Rm = Rm − an
(for m,n ∈ N0, n ≤ r)
This is the “Subtract-Instruction”: If the word stored in register
Rm ends with the symbol an, then delete an at that position; oth-
erwise leave the word unchanged.

3. IF Rm = � THEN L ELSE L0 OR . . . OR Lr
(for m ∈ N0 and L,L0, . . . , Lr ∈ N0 with L,L0, . . . , Lr ≤ k)
This is the “Jump-Instruction”: If the register Rm contains the
empty word, then go to the instruction labelled L; if the word in
register Rm ends with the symbol a0, then go to the instruction
labelled L0; . . .; if the word in register Rm ends with the symbol
ar, then go to the instruction labelled Lr.

97

4. PRINT
The “Print-Instruction”: Print (as output) the word stored in reg-
ister R0.

5. HALT
The “Halt-Instruction”: Stop the running of the program.

• αk, and only αk, is a Halt-Instruction.

(Note that within the instructions of a register program, ‘+’ and ‘−’ do not
stand for the usual arithmetical operations but rather for syntactic operations
on words stored in registers.)

Register programs might seem much simpler than programs in standard com-
puter languages – and indeed they are – but one can nevertheless prove that
register programs are actually just as powerful as the latter.

A register program P determines a “computation” on a register machine in
the following way: assume a machine that contains all the registers mentioned
in P and whose program is P. At the beginning, all registers except for R0

contain the empty word; the content of R0 is regarded as the “input” (which
can be any word in A∗ whatsoever, whether empty or non-empty). Then
the register machine works through P in a stepwise fashion, starting with
the instruction with label 0. After having executed an instruction with label
L, the machine moves on to the instruction with label L + 1, except for the
cases of a Jump-Operation (the result of which is a jump to an instruction
with a particular label) or the Halt-Operation (the result of which is the
end of the computation). Whenever a Print-Instruction is encountered, the
content of R0 at that point of computation is printed out (an “output”). The
machine will only stop after executing the Halt-Operation with the maximal
instruction label k.

Here is an example of a register program:

Example 21 Let A = {|}. So A∗ consists of: �, |, ||, |||, . . .
Call the following program P0:

0. IF R0 = � THEN 6 ELSE 1

1. LET R0 = R0 − |

2. IF R0 = � THEN 5 ELSE 3

98

3. LET R0 = R0 − |

4. IF R0 = � THEN 6 ELSE 1

5. LET R0 = R0 + |

6. PRINT

7. HALT

P0 successively deletes strokes from the input word in R0 until finally the
empty word is obtained. The printed output is determined to be � in case
R0 initially included an even number of stokes (where 0 counts as even), and
the output is | otherwise, i.e., in case R0 initially consisted of an odd number
of strokes.

Let us introduce a way of expressing such input-output patterns more suc-
cinctly: We say that a program P is started with a word ζ ∈ A∗ if, when P
is initiated on a register machine, ζ is stored in R0 (and all other registers
contain the empty word). In such a case we will write:

P : ζ → . . .

In order to say something about the behaviour of a program given an input
ζ, we can extend this notation in either of the following ways:

• If we want to express that P, started with ζ, eventuelly reaches the
Halt-Instruction (rather than running forever), we say

P : ζ → halt

• If we want to express that P, started with ζ, eventuelly reaches the
Halt-Instruction, but additionally we want to point out that in the
course of the computation P has given exactly one output η, then we
say

P : ζ → η

• If we want to express that P, started with ζ, never reaches the Halt-
Instruction (which is possible in light of the Jump-Instructions), then
we say

P : ζ →∞

99

Using this terminology, we can thus describe the input-output pattern of P0

in example 21 by means of

P0 : || . . . |︸ ︷︷ ︸
n

→ � if n is even

P0 : || . . . |︸ ︷︷ ︸
n

→ | if n is odd

So P0 decides in finitely steps whether the given input stroke sequence en-
codes an even number or not.

Let us consider another example:

Example 22 Let A = {a0, . . . , ar}. Call the following program P1:

0. PRINT

1. LET R0 = R0 + a0

2. IF R0 = � THEN 0 ELSE 0 OR 0 . . . OR 0

3. HALT

In this case we have that
P1 : ζ →∞

If P1 is started with ζ ∈ A∗, P1 prints out successively the words ζ, ζa0, ζa0a0, . . .
In other words: P1 enumerates the set {ζ, ζa0, ζa0a0, . . .} of words over A.

6.3 Register-Decidability, Register-Enumerability, Re-
gister-Computability

We are now able to study the notions of register-decidability, register-enum-
erability, and register-computability – which turn out to be necessary for the
proof of the incompleteness theorem for arithmetic – in more detail. Let us
start with register-decidability.

We have already seen a decision procedure at work in example 21. Now I
want to present another example program which solves a decision problem,
but instead of formulating in exact terms what the instructions in the cor-
responding register program are like, I will describe the program just on the

100

informal level while counting on your programming abilities being so refined
that you are able to turn this informal description into a register program
– the only important point being that this can be done in principle (this is
also how computer scientists first approach a software problem):

Example 23 It is not difficult to set up a computer procedure that decides
whether an arbitrary natural number n is prime:

1. Given input n.

2. If n = 0 or n = 1 then n is not prime: Output any string distinct from
“Yes” (e.g., “No” or “Goedel”).

3. Otherwise:

(a) Test numbers 2, . . . , n− 1 whether they divide n
(this can be programmed easily).

(b) If none of these numbers divides n, then n is prime: Output “Yes”.

(c) Otherwise: n is not prime. Output any string distinct from “Yes”.

If this procedure is started with the natural number 7 as an input, its output
is “Yes”; if it is started with input 12, its output is distinct from “Yes”,
which is supposed to indicate that the answer to the question “Is 12 prime?”
is negative.

One step in translating this informal program or algorithm into a proper
register program would be to show that programs which were said to take
natural numbers as their inputs can just as well be regarded as taking strings
of symbols as their inputs (as we have already seen in example 21) – e.g.,
use the decimal representation of n, which is a string of numerals out of
“0”,. . .,“9”, as the input that corresponds to n. Accordingly, the outputs of
such procedures (such as “Yes”) are strings of symbols.
We can also always in principle restrict ourselves to finite alphabets, since
countably infinite alphabets can be “simulated” by finite alphabets: e.g., the
infinite alphabet

{“A0”, “A1”, “A2”, . . .}

can replaced by the infinite set

{“A0”, “A1”, “A2”, . . .}

101

of words over the finite alphabet {“A”,“0”,. . .,“9”}.
Once the informal program from above is spelled out precisely in terms of a
register program, then what the existence of the resulting example decision
procedure shows is that the set of primes (or rather: the set of decimal strings
for primes) is decidable by means of a register machine.

Put slightly more precisely, we can define:

Definition 19 Let W a set of strings (words) over A, i.e., W ⊆ A∗. Let P
be a register program:

• P register-decides W iff
for every input ζ ∈ A∗, P eventually stops, having previously given
exactly one output η ∈ A∗, such that

– η = �, if ζ ∈ W
– η 6= �, if ζ /∈ W.

In other words:
P : ζ → � if ζ ∈ W

P : ζ → η for η 6= � if ζ /∈ W

• W is register-decidable iff there is a register program which register-
decides W.

Using this terminology, the set of decimal representations of prime numbers
is register-decidable since the informally stated procedure from above can be
turned into a precisely specified register decision procedure for this set over
the given alphabet A = {‘0’,. . .,‘9’} ∪ {�}. (� plays the role of “Yes” in the
original informal program specification.)

Remark 18 In order to save time and space we will keep on presenting
programs in this informal and somewhat “sketchy” manner, but it will always
be possible to transform such informally stated programs into proper register
programs.

But there are not only procedures that decide sets of natural numbers/sets
of strings but also procedures which enumerate sets of natural numbers/sets
of strings.

Example: Here is an informal computer procedure that enumerates the set
of prime numbers:

102

1. Start with natural number n = 1.

2. Test whether n is prime (as in the example before):

(a) If the test is positive, then: Output n.

(b) Otherwise: No output.

3. Increase n by 1 and go to line 2.

This type of procedure does not need any input. If it is started, it simply
generates all prime numbers, i.e., its overall output is

2, 3, 5, 7, 11, 13, 17, . . .

without ever terminating.

Accordingly, we define:

Definition 20 Let W a set of strings (words) over A, i.e., W ⊆ A∗. Let P
be a register program:

• P register-enumerates W iff
P, started with �, eventually yields as outputs exactly the words in W
(in some order, possibly with repetitions).

• W is register-enumerable iff there is a register program which register-
enumerates W.

Remark 19

• If P register-enumerates an infinite set, then P : �→∞.

• Do not mix up the notions of an (i) enumerable set in the sense of
countable set and the notion of a (ii) register-enumerable set, i.e., a
set enumerable by a register program: the former is solely about the
cardinality of a set, whereas the latter expresses that the members of a
set can be generated by a register program in a step-by-step manner. Ob-
viously, every register-enumerable set of words over A is countable, but
one can show that not every countable set of words over A is register-
enumerable.

103

So the set of decimal representations of prime numbers is not only decidable
but also enumerable since the informally stated procedure from above can be
turned into a precisely specified register program for this set over the given
alphabet A = {‘0’,. . .,‘9’}.
More interesting examples of enumerable sets are given by the following lit-
tle theorems (in the proofs of which we will only sketch the corresponding
enumerating register programs):

Theorem 9 Let A be a finite alphabet.
Then A∗ is register-enumerable.

Proof. Assume A = {a0, . . . , an}. The strings over A can be ordered as
follows: for ζ, ζ ′ ∈ A∗, define

ζ < ζ ′ iff

• the length of ζ is less than the length of ζ ′

or

• the length of ζ is identical to the length of ζ ′ and
ζ precedes ζ ′ lexicographically, i.e.:

ζ is of the form ξaiη,
ζ ′ is of the form ξajη

′,
where i < j (and ξ ∈ A∗ or empty, η, η′ ∈ A∗ or empty).

It is easy to set up a procedure that enumerates the members of A∗ according
to this order. This procedure can then be turned into a proper register-
program.

Theorem 10 Let S be a finite symbol set (which determines the correspond-
ing first-order alphabet AS that can be “simulated” by a finite alphabet A as
explained above).
Then the set of sequents that are derivable in the sequent calculus over the
symbol set S is register-enumerable.

Proof. First of all, order the set TS of terms and the set FS of formulas
as in the proof of theorem 9.
Now for n = 1, 2, 3, . . . enumerate

104

• the first n terms and the first n formulas according to this order,

• the finitely many sequent calculus derivations of length ≤ n (i) which
use only these formulas and terms and (ii) which only consist of se-
quents containing at most n formulas as members (this can be done by
a procedure).

Every derivation in the sequent calculus is reached by this enumeration for
some natural number n. For every enumerated derivation, output the last
sequent of the derivation. This informal procedure can be transformed into
a register-program.

Theorem 11 Let S be a finite symbol set (which determines the correspond-
ing first-order alphabet AS that can again be “simulated” by a finite alphabet
A as explained above).
Then {ϕ ∈ FS | |= ϕ} is register-enumerable.

Proof. By the completeness theorem, it is sufficient to show that
{ϕ ∈ FS | ` ϕ} is enumerable. An enumeration procedure for {ϕ ∈ FS | ` ϕ}
can be set up in the following way:
Enumerate the set of sequents that are derivable in the sequent calculus
over the symbol set S as explained in the proof of theorem 10: if such an
enumerated sequent consists only of a single formula, output the formula.
Once, again, this procedure can be turned into a register-program.

Finally, we can define a notion of register-computability for functions:

Definition 21 Let A and B be alphabets. Let f be a function that maps
every string (word) over A to a string (word) over B, i.e., f : A∗ → B∗. Let
P be a register program (over A ∪ B):

• P register-computes f iff
P computes for every input ζ ∈ A∗ exactly one output η ∈ B∗ (and
stops afterwards), such that η = f(ζ).
In other words: For all ζ ∈ A∗: P : ζ → f(ζ)

• f is register-computable iff there is a register-program P which register-
computes f .

Since we will concentrate on decidability and enumerability in the following,
we do not go into more details about computability.

105

6.4 The Relationship Between Register-Enumerability
and Register-Decidability

Theorem 11 told us that the set of logically true formulas (for a given finite
symbol set) is register-enumerable. Question: Is it also register-decidable?

Certainly, this does not follow from its register-enumerability in any obvi-
ous manner: let ϕ be an arbitrary formula (the input); now consider the
enumeration procedure that we sketched in the proof of theorem 11:

• If ϕ is logically true, then there is computation step at which it is
enumerated.
Therefore, there is a computation step at which we will know that ϕ is
logically true – the logical truth of ϕ will be positively decided.

• But if ϕ is not logically true, then the procedure will go on forever
without ever enumerating ϕ. There will not be a computation step at
which we could negatively decide the logical truth of ϕ (at least not by
inspecting the list of formulas enumerated so far).

In fact one can show that the set of logically true formulas for a first-order
language is register-enumerable but not register-decidable (Church 1936)!

What can be shown, however, is that every register-decidable set is register-
enumerable, which follows from our next theorem:

Theorem 12 Let A be an alphabet. Let W ⊆ A∗:
W is register-decidable if and only if both W and A∗ \ W are register-
enumerable.

Proof.
(⇒) Assume W is register-decidable:

• This implies that W is register-enumerable, because:
By the register-decidability of W , there is a decision register program
P forW . From P we can set up an enumeration procedure P′ forW : (i)
let P′ register-enumerate the strings of A∗ according to the order that
we defined in the proof of theorem 9; (ii) for each enumerated word let
P′ apply P to decide whether this word is inW : if yes, output the word
(otherwise let the program do nothing).

106

• Furthermore, A∗ \W is register-enumerable:
As before there is by assumption a decision register program P for W .
But from P we can easily construct a decision procedure P′ for A∗ \W :
simply let P′ be like P except that whenever P is defined to yield output
� then P′ is chosen to have an output different from �, while whenever
P is defined to output a string distinct from � then P′ is chosen to
have � as its output. Hence, A∗ \W is register-decidable. By the same
reasoning as for W , this implies that A∗ \W is register-enumerable.

(⇐) Assume W and A∗ \ W are register-enumerable: So there are enumer-
ation register programs P and P′ for W and A∗ \ W , respectively. We can
combine P and P′ in order to determine a decision register program P′′ forW :
let ζ be an arbitrary input; let P′′ run P and P′ alternately in a step-by-step
manner: first step of P, first step of P′, second step of P, second step of P′,. . .
Eventually, since either ζ ∈ W or ζ ∈ A∗ \W , either P or P′ must enumerate
ζ: if P enumerates ζ then let the output of P′′ be �; if P′ enumerates ζ then
let P′′ output any string distinct from �.

Remark 20 Register-decidability and register-enumerability were defined with
an implicit reference to an underlying alphabet A. However, it is easy to see
that register-decidability and register-enumerability are not really sensitive to
the specific choice of this alphabet: consider alphabets A1, A2, such that A1 ⊆
A2, and assume W ⊆ A∗1; then it holds that W is register-decidable/register-
enumerable with respect to A1 iff W is register-decidable/register-enumerable
with respect to A2.

107

6.5 First-Order Theories and Axiomatizability

In the following we will presuppose symbol sets S that are finite (actually, it
would suffice to focus on symbol sets that are register-decidable over a given
finite alphabet).
Here is what we want to understand by a theory :

Definition 22 Φ ⊆ FS is a theory iff

• Φ is a set of sentences,

• Φ is satisfiable,

• Φ is closed under logical consequence, i.e., for all sentences ϕ ∈ FS :
if Φ |= ϕ then ϕ ∈ Φ.

(Actually, we should speak of an S-theory, but as usual we will often suppress
the reference to a symbol set.)

Models determine theories in the following sense:

Example 24 For every S-model M the set

Th(M) = {ϕ ∈ FS |ϕ is a sentence,M |= ϕ}

is a theory – the theory of the model M.

In particular, reconsider first-order arithmetic:

Let Sarith = {0, 1, +, ·};
standard model of arithmetic: Marith = (N0, I) with I as expected
(so I(0) = 0, I(+) = + on N0, . . .).

Remark: From now on we will omit bars over signs again!

We once called Φarith the set of Sarith-sentences that are satisfied by this model,
i.e.:

Φarith︸ ︷︷ ︸
“arithmetic”

= {ϕ ∈ FSarith
|ϕ sentence, (N0, I) � ϕ}

In the terminology from above: Φarith = Th(Marith).

A different way of determining a theory is by means of a set of formulas:

108

Example 25 Let Φ be a set of sentences over a symbol set S.

We define:
Φ|= = {ϕ ∈ FS |ϕ is a sentence,Φ |= ϕ}

Obviously, by the definitions above it holds that:

• If T is a theory, then T |= = T .

• If Φ is a satisfiable set of S-sentences, then Φ|= is a theory.

So theories can also be generated on the basis of satisfiable sets of sentence
by means of logical consequence.

In particular, consider the following theory TPA which is called (first-order)
“Peano arithmetic”:

Let TPA = Φ
|=
PA, where ΦPA is the following (infinite) set of sentences:

1. ∀x¬x+ 1 ≡ 0

2. ∀x∀y(x+ 1 ≡ y + 1→ x ≡ y)

3. ∀x x+ 0 ≡ x

4. ∀x∀y x+ (y + 1) ≡ (x+ y) + 1

5. ∀x x · 0 ≡ 0

6. ∀x∀y x · (y + 1) ≡ x · y + x

7. Induction:

∀x0 . . . ∀xn−1

((
ϕ

0

y
∧ ∀y

(
ϕ→ ϕ

y + 1

y

))
→ ∀y ϕ

)
(for all variables x0, . . . , xn−1, y, for all ϕ ∈ FS with free(ϕ) ⊆ {x0, . . . , xn−1, y})

Since Marith is a model for ΦPA, ΦPA is satisfiable and thus TPA is a theory.

Many theorems in number theory can actually be derived from ΦPA, i.e.,
are members of first-order Peano arithmetic TPA. As we will see, it follows
nevertheless from Gödel’s Incompleteness Theorems that

TPA $ Th(Marith) = Φarith

So why should we be interested in theories such as TPA at all? Because they
are axiomatizable:

109

Definition 23

• A theory T is axiomatizable iff there there is a register-decidable set Φ
of S-sentences such that T = Φ|=.

• A theory T is finitely axiomatizable iff there there is a finite set Φ of
S-sentences such that T = Φ|=.

So e.g. the set of logically true S-sentences is finitely axiomatizable (for
Φ = ∅). TPA is axiomatizable (but one can show that it is not finitely
axiomatizable).

Axiomatizable theories are important because they can be generated by a
computer program:

Theorem 13 Every axiomatizable theory is register-enumerable.

Proof. Let T be a theory and let Φ be a register-decidable set of S-sentences
such that T = Φ|=. The sentences of T can be register-enumerated as follows:
let a register program generate systematically (as sketched in section 6.3) all
sequents that are derivable in the sequent calculus and let the program check
in each case whether all members of the antecedent of the generated sequent
belong to Φ; this can be done by means of a register-decision program for Φ
which exists by assumption. If all members of the antecedent belong to Φ, let
the program check whether the consequent of the sequent is a sentence (this
can obviously be decided as well): if yes, let the register program output the
consequent of the sequent.
An axiomatizable theory is not necessarily register-decidable (the set of log-
ically true S-sentences is a counterexample; compare the last section). For
special theories, however, the situation is different:

Definition 24 A theory T (of S-sentences) is complete iff for every S-
sentence: ϕ ∈ T or ¬ϕ ∈ T .

Obviously, every theory of the form Th(M) is complete (for arbitrary models
M). Note that complete theories are still theories and thus cannot contain
both ϕ and ¬ϕ for any sentence ϕ, for otherwise they would not be satisfiable.

Complete theories have the following nice property with regard to register-
decidability:

110

Theorem 14

1. Every axiomatizable and complete theory is register-decidable.

2. Every enumerable and complete theory is register-decidable.

Proof. By theorem 13 it is sufficient to prove 2. So let T be a register-
enumerable complete theory. A decision register program for T can be set
up as follows: some S-string ϕ is given as an input. At first the program de-
cides whether ϕ is an S-sentence (the set of S-sentences is of course register-
decidable). If yes, let the program enumerate the members of T (such an
enumeration procedure exists by assumption). Since T is complete, eventu-
ally either ϕ or ¬ϕ is enumerated: in the first case let the procedure output
�, in the second case any string distinct from �.

6.6 Arithmetical Representability and the Incomplete-
ness Theorems

In the following, let Φ be a set of Sarith-sentences, i.e., sentences of first-order
arithmetic. On the basis of Sarith = {0, 1, +, ·} we can build up Sarith-
terms that can be used as standard names (numerals) for natural numbers:
0, 1, (1+1), (1+1)+1,. . . Let us abbreviate the standard name for the natural
number n by means of n (so n is an Sarith-term that denotes n according to
the standard interpretation of Sarith).

In certain cases, a set Φ may be shown to “know” something about particular
relations or functions of natural numbers in the sense that facts about these
relations or functions are represented in Φ by means of formulas:

Definition 25

• A relation R ⊆ Nr
0 is representable in Φ iff there is an Sarith-formula ϕ

(the free variables of which are among {v0, . . . , vr−1}) such that for all
n0, . . . , nr−1 ∈ N0:

1. if R(n0, . . . , nr−1) then Φ ` ϕn0,...,nr−1

v0,...,vr−1

2. if not R(n0, . . . , nr−1) then Φ ` ¬ϕn0,...,nr−1

v0,...,vr−1

(we also say that in such a case ϕ represents R in Φ).

111

• A function F : Nr
0 → N0 is representable in Φ iff there is an Sarith-

formula ϕ (the free variables of which are among {v0, . . . , vr}) such
that for all n0, . . . , nr ∈ N0:

1. if F (n0, . . . , nr−1) = nr then Φ ` ϕn0,...,nr
v0,...,vr

2. if F (n0, . . . , nr−1) 6= nr then Φ ` ¬ϕn0,...,nr
v0,...,vr

3. Φ ` ∃!vrϕn0,...,nr−1

v0,...,vr−1

(we also say that in such a case ϕ represents F in Φ).

In some cases a set Φ may be shown to “know” something about procedures
and computation in the sense that all register-decidable relations and all
register-computable functions on N0 are represented in Φ by means of for-
mulas. It is useful to introduce an abbreviation for this type of property of
a set Φ of arithmetical sentences:

Definition 26

ReprΦ iff all register-decidable relations R ⊆ Nr
0 (for r = 1, 2, . . .) and all

register-computable functions F : Nr
0 → N0 are representable in Φ.

Remark: The register-decidability or register-enumerability of a relation R ⊆
Nr

0 for r > 1 and the register-computability of a function F : Nr
0 → N0

for r > 1 is defined analogously to our definitions of register-decidability,
register-enumerability, and register-computability for sets of signs or natural
numbers in section 6.3.

What examples of sets of sentences that have this property Repr do we know?
Here are two important ones:

Theorem 15

• Repr Th(Marith), i.e., the set of true arithmetical first-order sentences
has the property Repr.

• Repr TPA, i.e., the set of arithmetical sentences derivable in first-order
Peano arithmetic has the property Repr.

Proof. Without proof. (Note that the proof is highly non-trivial and needs
a lot of work – a big part of Gödel’s proof is devoted to these matters.)

112

For all further considerations we fix a register-computable coding of Sarith-
formulas by natural numbers (a Gödel numbering) such that every number
is the Gödel number of a (unique) formula. So we can write

• gϕ for the Gödel number of ϕ (hence gϕ ∈ N0)

Via this encoding it is possible to translate statements about formulas into
statements about natural numbers and vice versa. Some statements about
natural numbers even turn out to be equivalent to statements about their
own Gödel numbers – these sentences speak about their codes and thus, in
some sense, about themselves. Indeed one can show that there are many
such sentences:

Lemma 18 (Fixed Point Lemma)
Assume that ReprΦ: Then for every Sarith-formula ψ in which precisely the
variable v0 occurs freely there is an Sarith-sentence ϕ (= ϕψ) such that

Φ ` ϕ↔ ψ
gϕ

v0

(hence, up to provable equivalence, ϕ expresses about “itself”: “my” code has
the property expressed by ψ; gϕ is the numeral of the code of ϕ).

Proof.
Let F : N0 × N0 → N0 be defined as follows: if n is the Gödel number of
some arithmetical formula χ in which precisely the variable v0 occurs freely,

then let F (n,m) = g
χm
v0 ; otherwise, let F (n,m) = 0.

Since we presuppose a register-computable coding function, the function F
itself can easily be seen to be register-computable as well. Furthermore,
for every Sarith-formula χ in which precisely the variable v0 occurs freely it
follows that:

F (gχ,m) = g
χm
v0

Since ReprΦ, this function F can be represented in Φ by a formula α (the
free variables of which are among {v0, v1, v2}, where v0 and v1 stand for the
two arguments of F and v2 stands for the corresponding function value of
F).
Now let ψ be given with precisely v0 free in it. We introduce the following
abbreviation: let

113

• β = ∀v2(α v0,v0,v2

v0,v1,v2
→ ψ v2

v0
)

• ϕ = ∀v2(α g
β ,gβ ,v2

v0,v1,v2
→ ψ v2

v0
)

Since β is an arithmetical formula in which precisely v0 is free and since

ϕ = β g
β

v0
, it follows that F (gβ, gβ) = gϕ and therefore by the representation

of F in terms of α:

Φ ` αg
β, gβ, gϕ

v0, v1, v2

Now we can finally show that Φ ` ϕ↔ ψ gϕ

v0
:

1. By definition of ϕ,

Φ ∪ {ϕ} ` αg
β, gβ, gϕ

v0, v1, v2

→ ψ
gϕ

v0

Since we already know that the antecedent of this implication formula
is derivable from Φ, it follows that

Φ ∪ {ϕ} ` ψg
ϕ

v0

But by the sequent calculus this implies that Φ ` ϕ→ ψ gϕ

v0
.

2. Because F is represented in Φ by α, it must hold that

Φ ` ∃!v2α
gβ, gβ, v2

v0, v1, v2

We aready know that Φ ` α gβ ,gβ ,gϕ
v0,v1,v2

, so it follows that

Φ ` ∀v2(α
gβ, gβ, v2

v0, v1, v2

→ v2 ≡ gϕ)

which entails (by the equality in the “then” part) that

Φ ` ψg
ϕ

v0

→ ∀v2(α
gβ, gβ, v2

v0, v1, v2

→ ψ
v2

v0

)

But this is just

Φ ` ψg
ϕ

v0

→ ϕ

So we have implications in both directions and thus we are done.

114

This fixed point lemma has grave consequences:

Lemma 19
Assume that ReprΦ and let Φ be a consistent set of arithmetical sentences:
If the set of Gödel numbers of sentences in Φ`(= Φ|=) is representable in Φ
(briefly: if Φ` is representable in Φ), then there is an Sarith-sentence ϕ such
that neither Φ ` ϕ nor Φ ` ¬ϕ.

(For the definition of Φ|= see the last section; note that by soundness and
completeness we can write Φ` instead of Φ|=.)

Proof. Suppose χ (in which precisely v0 is free) represents the set Φ` in Φ.
Then it follows that for arbitrary arithmetical sentences α:

1. if gα is a member of the set of codes of sentences in Φ`, then Φ ` χgα
v0

2. if gα is not a member of the set of codes of sentences in Φ`, then
Φ ` ¬χgα

v0
.

By the consistency of Φ this entails

Φ ` χg
α

v0

iff Φ ` α

Now let ψ = ¬χ: by lemma 18 there is a “fixed point sentence” ϕ for ψ such
that

Φ ` ϕ↔ ¬χg
ϕ

v0

(so ϕ expresses: “my” code is not a member of the codes of sentences in Φ`,
i.e., “I” am not derivable from Φ).
But now we can conclude:

• If Φ ` ϕ, then Φ ` χgϕ
v0

and hence by the fixed point property (and
applying negation) Φ ` ¬ϕ, contradicting the consistency of Φ.

• If Φ ` ¬ϕ, then by the fixed point property (and applying negation)

Φ ` χgϕ
v0

and thus Φ ` ϕ, again contradicting the consistency of Φ.

So neither Φ ` ϕ nor Φ ` ¬ϕ.
But now we can finally put things together in order to derive:

115

Theorem 16 (Gödel’s First Incompleteness Theorem)

1. Let Φ be a consistent and register-decidable set of arithmetical sentences
for which it is the case that ReprΦ: then there is an Sarith-sentence ϕ
such that neither Φ ` ϕ nor Φ ` ¬ϕ.

2. Th(Marith) is not axiomatizable.

Proof.

1. Let Φ be described above and assume that for every Sarith-sentence ϕ
either Φ ` ϕ or Φ ` ¬ϕ. So by section 6.5,Φ`(= Φ|=) is a complete ax-
iomatizable theory which, by theorem 14, is register-decidable. Hence,
by ReprΦ, the set (of codes of members of) Φ` is representable in Φ,
which contradicts lemma 19.

2. If Th(Marith) were axiomatizable, then it would be a complete ax-
iomatizable theory, which, by the same argument as before, would be
register-decidable. Moreover, Th(Marith) has the property Repr. But
as we have just seen this would contradict lemma 19.

Remark: Actually, this is a version of Gödel’s First Incompleteness Theorem
– Gödel’s original First Incompleteness Theorem is slightly stronger and uses
more “fine-grained” assumptions.

Gödel’s Second Incompleteness Theorem extends this result by showing that
consistent axiomatizable theories that contain “enough” arithmetic (e.g.,
first-order Peano arithmetic) cannot prove their own consistency, where the
corresponding consistency statement can be expressed as an arithmetical
sentence that speaks about the codes of arithmetical sentences.

That’s it. . . hope you liked it!! (Stay logical!)

116

7 Solutions to the Problem Sets

7.1 Solutions to Problem Set 1

1. (a) Show (this is a recapitulation of something you should know about
countable sets):

If the sets M0,M1,M2, . . . are countable,
then

⋃
n∈NMn is countable as well.

Proof.
Without restriction of generality, we may assume that Mn 6= ∅
for all n ∈ N = {0, 1, 2, . . .} (otherwise simply omit all empty sets
Mn from our countable sequence of sets and reenumerate them).
Furthermore, we may assume that each set Mn is of the form
{an0 , an1 , an2 , . . .}.
Now we can think of the sets Mn as being listed as rows of an
array of the following kind:

M0 : a0
0 a0

1 a0
2 . . .

M1 : a1
0 a1

1 a1
2 . . .

M2 : a2
0 a2

1 a2
2 . . .

...
...

...
...

The entries of this array can be enumerated in the following “diag-
onal” manner: (1.)a0

0, (2.)a
0
1, (3.)a

1
0, (4.)a

2
0, (5.)a

1
1, (6.)a

0
2, (7.)a

0
3, . . .

Since every member of
⋃
n∈NMn occurs in this array, this proves

that there is an onto mapping from N to
⋃
n∈NMn. Therefore,⋃

n∈NMn is countable (compare p. 8 in the lecture notes).

(b) Prove the following lemma by means of 1a:

If A is a countable alphabet, then the set A∗ (of finite strings over
A) is countable, too.
Proof.
A is of the form {a0, a1, a2, . . .}. Since A∗ is the set of strings over
A with finite length n = 1, 2, 3, . . ., we can regard A∗ as the union⋃
nAn = A1 ∪ A2 ∪ A3 ∪ . . .

Each of the sets An is countable, because: A is countable by
assumption. If An is countable, then of course also {ak} × An is
countable for arbitrary k = 0, 1, 2, . . ., and sinceAn+1 =

⋃
k∈N({ak}

117

× An) it follows from 1a that also An+1 is countable. Hence, by
induction over n, each set An is countable.
Thus, by 1a again, since everyAn is countable, their union

⋃
n∈NAn

is countable and we are done.

2. Let S be an arbitrary symbol set. We consider the following calculus
C of rules:

•
x x

(for arbitrary variables x)

• x ti
x f(t1, . . . , tn)

(for arbitrary variables x, for arbitrary S-terms t1, . . . , tn, for arbitrary
n-ary function signs f ∈ S, for arbitrary i ∈ {1, . . . , n}).

Show that for all variables x and all S-terms t holds: The string

x t

is derivable in C if and only if x ∈ var(t) (i.e., x is a variable in t).
Proof. (⇒) Let x be an arbitrary variable. We show that if the string
x t is derivable on the basis of the rules of C, then x is a variable in
t. This is proven by induction over the strings x t that can be derived
in C (the property P that we prove such strings x t to have is in this
case: the variable x occurs somewhere in t, i.e., the string before the
blank occurs somewhere in the string after the blank):
Induction basis:
All strings x t with

x t
have the property P. This is because the

only such strings are of the form x x and x occurs in x.
Induction step:
Assume the string x ti has the property P, i.e., x occurs in the S-term
ti. But then x certainly also occurs in the S-term f(t1, . . . , tn), since ti
is a substring of f(t1, . . . , tn) and x is a substring of ti by the inductive
assumption. So f(t1, . . . , tn) has the propery P as well.

118

(⇐) We fix an arbitrary variable x and prove by induction over S-terms
t that if x occurs in t then the string x t is derivable by means of the
rules of C (so the property P that we prove terms t to have is in this
case: if x occurs in t, then the string x t is derivable in the calculus C
of rules):
Induction basis:
Variables have the property P: if x occurs in t, (i) then in the case
where t = x, it is indeed the case that the string x x is derivable in C,
(ii) while the other case, i.e., where t is a variable different from x, is
excluded, since x does not occur in any variable different from x.
Constants satisfy the property P vacuously (x does not occur in any
constant t).
Induction step:
Assume S-terms t1, . . . , tn have the property P.
So if x occurs in t1 then the string x t1 is derivable in the calculus
C, and the same holds for t2, . . . , tn. Now consider any string of the
form f(t1, . . . , tn) where f is an arbitrary n-ary function sign in S:
if x occurs in f(t1, . . . , tn), then it must occur in one of the terms
t1, . . . , tn, say in ti: by the inductive assumption, it follows that the
string x ti is derivable in C. But then the second rule of C can be used
to derive the string x f(t1, . . . , tn). So we have shown that if x occurs
in f(t1, . . . , tn), then x f(t1, . . . , tn) is derivable in C. This means that
f(t1, . . . , tn) has the property P.

3. Prove that the following strings are S-terms (for given S with c, f, g ∈
S, where f is a binary function sign, g is a unary function sign, x and
y are variables):

(a) f(x, c):

x (T1)(6)

c (T2)(7)

f(x, c) (T3, with 1., 2.)(8)

(b) g(f(x, c)):

f(x, c) (see 3a)(1)

g(f(x, c)) (T3, with 1.)(2)

119

(c) f(f(x, c), f(x, f(x, y))):

f(x, c) (see 3a)(1)

x (T1)(2)

y (T1)(3)

f(x, y) (T3, with 2., 3.)(4)

f(x, f(x, y)) (T3, with 2.,4.)(5)

f(f(x, c), f(x, f(x, y))) (T3, with 1.,5.)(6)

4. Prove that the following strings are S-formulas (with x, y, c, f , g as
in 3 and where P , Q ∈ S, such that P is a unary predicate and Q is a
binary predicate):

(a) ¬P (f(x, c)):

P (f(x, c)) (F2; use 3a)(1)

¬P (f(x, c)) (F3, with 1.)(2)

(b) ∃x∀y(P (g(f(x, c)))→ Q(y, y)):

P (g(f(x, c))) (F2; use 3b)(1)

Q(y, y) (F2)(2)

(P (g(f(x, c)))→ Q(y, y)) (F4, with 1., 2.)(3)

∀y(P (g(f(x, c)))→ Q(y, y)) (F5, with 3.)(4)

∃x∀y(P (g(f(x, c)))→ Q(y, y)) (F5, with 4.)(5)

(c) (∀x¬P (f(x, c)) ∨Q(f(x, c), f(f(x, c), f(x, f(x, y))))):

¬P (f(x, c)) (use 4a)(1)

∀x¬P (f(x, c)) (F5, with 1.)(2)

Q(f(x, c), f(f(x, c), f(x, f(x, y)))) (F2; use 3a, 3c)(3)

(∀x¬P (f(x, c)) ∨Q(f(x, c), f(f(x, c), f(x, f(x, y))))) (F4, with 2., 3.)
(4)

5. Prove by induction: the string ∀xf(x, c) is not an S-term (where S is
an arbitrary symbol set).

120

Proof. We prove this (as I told you rather trivial) statement by in-
duction over S-terms t (the property P which we show terms have is
in this case: t is different from the string ∀xf(x, c)):
Induction basis:
Every variable and every S-constant is certainly different from ∀xf(x, c).
Induction step:
Assume S-terms t1, . . . , tn are different from ∀xf(x, c).
It is certainly the case that f(t1, . . . , tn) is different from ∀xf(x, c),
since the former begins with a function sign while the latter begins
with a quantifier.
(The triviality of the result shows up in the way that we did not even
have to use the inductive assumption in order to prove that f(t1, . . . , tn)
differs from ∀xf(x, c).)

6. Let x, y, z be variables, f ∈ S a unary function sign, P , Q, R ∈ S
with P being a binary predicate, Q a unary predicate, and R a ternary
predicate. Determine for the following S-formulas ϕ the corresponding
set of variables that occur freely in ϕ (i.e., the sets free(ϕ)):
(We state 6a in detail but for 6b and 6c only the final solutions.)

(a) ∀x∃y(P (x, z)→ ¬Q(y))→ ¬Q(y):
free(∀x∃y(P (x, z)→ ¬Q(y))→ ¬Q(y)) =
free(∀x∃y(P (x, z)→ ¬Q(y))) ∪ free(¬Q(y)) =
[free(∃y(P (x, z)→ ¬Q(y))) \ {x}] ∪ free(Q(y)) =
[[free((P (x, z)→ ¬Q(y))) \ {y}] \ {x}] ∪ {y} =
[free((P (x, z)→ ¬Q(y))) \ {x, y}] ∪ {y} =
[[free(P (x, z)) ∪ free(¬Q(y))] \ {x, y}] ∪ {y} =
[[{x, z} ∪ free(Q(y))] \ {x, y}] ∪ {y} =
[[{x, z} ∪ {y}] \ {x, y}] ∪ {y} =
[{x, y, z} \ {x, y}] ∪ {y} =
{z} ∪ {y} =
{y, z} (so this formula is not a sentence)

(b) ∀x∀y(Q(c) ∧Q(f(x)))→ ∀y∀x(Q(y) ∧R(x, x, y)):
free(∀x∀y(Q(c) ∧Q(f(x)))→ ∀y∀x(Q(y) ∧R(x, x, y))) = ∅
(so this formula is a sentence)

(c) Q(z)↔ ∃z(P (x, y) ∧R(c, x, y)):
free(Q(z)↔ ∃z(P (x, y) ∧R(c, x, y))) = {x, y, z}
(so this formula is not a sentence)

121

7.2 Solutions to Problem Set 2

1. Let S = {P,R, f, g, c0, c1}, where P is a unary predicate, R is a binary
predicate, and f and g are binary function signs. Let M = (D, I) be
an S-model with D = R, such that I(P) = N, I(R) is the “larger
than” (>) relation on R, I(f) is the addition mapping on R, I(g) is
the multiplication mapping on R, I(c0) = 0, and I(c1) = 1. Finally,
let s be a variable assignment over M with the property that s(x) = 5
and s(y) = 3 (where x, y, and z from below, are fixed pairwise distinct
variables).

Determine the following semantic values by step-by-step application of
the definition clauses for V alM,s; subsequently, translate the terms/for-
mulas into our usual mathematical “everyday” language:

(a) V alM,s(g(x, f(y, c1))):

V alM,s(g(x, f(y, c1))) = 5 · (3 + 1) = 20

(b) V alM,s(f(g(x, y), g(x, c1))):

V alM,s(f(g(x, y), g(x, c1))) = 5 · 3 + 5 · 1 = 20

(c) V alM,s(∀x∀y(R(x, c0)→ ∃z(P (z) ∧R(g(z, x), y)))):

Here we take a more detailed look:

V alM,s(∀x∀y(R(x, c0)→ ∃z(P (z) ∧R(g(z, x), y)))) = 1 iff

for all d ∈ D:
V alM,s d

x
(∀y(R(x, c0)→ ∃z(P (z) ∧R(g(z, x), y)))) = 1 iff

for all d ∈ D, for all d′ ∈ D:
V al

M,s d
x
d′
y

(R(x, c0)→ ∃z(P (z) ∧R(g(z, x), y))) = 1 iff

for all d ∈ D, for all d′ ∈ D:
V al

M,s d
x
d′
y

(R(x, c0)) = 0 or

V al
M,s d

x
d′
y

(∃z(P (z) ∧R(g(z, x), y))) = 1 iff

122

for all d ∈ D, for all d′ ∈ D:
it is not the case that (s d

x
d′

y
(x), I(c0)) ∈ I(R) or

there is a d′′ ∈ D, s.t. V al
M,s d

x
d′
y
d′′
z

(P (z) ∧R(g(z, x), y)) = 1 iff

for all d ∈ D, for all d′ ∈ D:
it is not the case that d > 0 or
there is a d′′ ∈ D, s.t.

V al
M,s d

x
d′
y
d′′
z

(P (z)) = 1 and V al
M,s d

x
d′
y
d′′
z

(R(g(z, x), y)) = 1

iff

for all d ∈ D, for all d′ ∈ D:
d ≤ 0 or
there is a d′′ ∈ D, s.t.

s d
x
d′

y
d′′

z
(z) ∈ I(P) and

(V al
M,s d

x
d′
y
d′′
z

(g(z, x)), s d
x
d′

y
d′′

z
(y)) ∈ I(R)

iff

for all d ∈ D, for all d′ ∈ D:
d ≤ 0 or
there is a d′′ ∈ D, s.t. d′′ ∈ N and d′′ · d > d′

(“For all x ∈ R with x > 0 and all y ∈ R there is an n ∈ N, such
that nx > y”)

For which variable assignments s over M is it the case that

P (z) ∧R(z, c1) ∧ ∀x(P (x) ∧ ∃y(P (y) ∧ g(x, y) ≡ z)→ x ≡ c1 ∨ x ≡ z)

is true at M and s:

For those variable assignments s for which s(z) is a prime number !

2. Let S = {P, f}, where P is a unary predicate and f is a binary function
sign.

For each of the following formulas in FS find an S-model and a corre-
sponding variable assignment relative to which the formula is true and
find an S-model and a corresponding variable assignment relative to
which the formula is false:

123

(a) ∀v1f(v2, v1) ≡ v2:

For D = N, I(f) = ·, s(v2) = 0: true
For D = N, I(f) = +, s(v2) = 0: false

(b) ∃v2∀v1f(v2, v1) ≡ v2: analogous to 2a

(c) ∃v2(P (v2) ∧ ∀v1P (f(v2, v1))):

For D = N, I(f) = ·, I(P) = set of even natural numbers: true
For D = N, I(f) = ·, I(P) = set of odd natural numbers: false

3. Let D be finite and non-empty, let S be finite. Show that there are
only finitely many S-models with domain D.

Proof. Let k be the cardinality of D. For every constant c in S there
are k possible ways of choosing I(c). For every n-ary predicate P in
S there are 2(kn) possible ways of choosing I(P). Finally, for every
n-ary function sign f in S there are k(kn) possible ways of choosing
I(f). Since there are only finitely many symbols in S, the numbers
of possible interpretations mappings I on S (and thus the number of
S-models M) is a finite product of finite numbers of the form k or 2(kn)

or k(kn); but such a product is of course finite.

4. A formula in which ¬, →, ↔ do not occur is called positive.

Prove: For every positive formula there is a model and a variable assign-
ment which taken together satisfy the formula (independent of what S
is like).

Hint: You might consider “trivial” models the domains of which only
have one member.

Proof. Let D = {1}.
Let I(P) = Dn = {(1, 1, . . . , 1︸ ︷︷ ︸

n

)} (for n-ary predicates P).

Let I(f) : Dn → D s.t. (1, 1, . . . , 1︸ ︷︷ ︸
n

) 7→ 1 (for n-ary function signs f).

Let M = (D, I).

124

By the definition of positive formula, all and only positive formulas can
be derived in the following positive-formula calculus of rules:

(P1) ≡(t1,t2) (for S-terms t1, t2)

(P2) P (t1,...,tn) (for S-terms t1, . . . , tn, for n-ary P ∈ S)

(P3)
ϕ, ψ

(ϕ ∨ ψ)︸ ︷︷ ︸
disjunction

ϕ, ψ

(ϕ ∧ ψ)︸ ︷︷ ︸
conjunction

(P4)
ϕ

∀xϕ︸ ︷︷ ︸
universally quantified

ϕ

∃xϕ︸ ︷︷ ︸
existentially quantified

(for arbitrary variables x)

By induction over positive formulas we can show that for every positive
formula ϕ it holds that:

For every variable assignment s over M, V alM,s(ϕ) = 1.

(Note that there is actually just one variable assignment s over M!)

P1&P2: V alM,s(P (t1, . . . , tn)) = 1 because
(V alM,s(t1), . . . , V alM,s(tn))︸ ︷︷ ︸

(1,1,...,1)

∈ I(P)︸ ︷︷ ︸
Dn

X

(analogously for ≡)

P3: Assume that V alM,s(ϕ) = V alM,s(ϕ) = 1:
but then it follows that V alM,s(ϕ∧ψ) = 1 and V alM,s(ϕ∨ψ) = 1
(for arbitrary s).

P4: Assume that V alM,s(ϕ) = 1:
V alM,s(∀xϕ) = 1 iff
for all d ∈ D V alM,s d

x
(ϕ) = 1 iff (since s d

x
= s)

for all d ∈ D V alM,s(ϕ) = 1 iff
V alM,s(ϕ) = 1, which is the case by inductive assumption.
So we are done (analogously for ∃).

125

5. Prove the coincidence lemma by induction over terms and formulas:

Let S1,S2 be two symbol sets. Let M1 = (D, I1) be an S1-model, let
M2 = (D, I2) be an S2-model.
Let s1 be a variable assignment over M1, s2 a variable assignment over
M2.
Finally, let S = S1 ∩ S2:

(a) For all terms t ∈ TS :

If I1(c) = I2(c) for all c in t
I1(f) = I2(f) for all f in t
s1(x) = s2(x) for all x in t

then: V alM1,s1(t) = V alM2,s2(t)

(b) For all formulas ϕ ∈ FS :

If I1(c) = I2(c) for all c in ϕ
I1(f) = I2(f) for all f in ϕ
I1(P) = I2(P) for all P in ϕ
s1(x) = s2(x) for all x ∈ free(ϕ)

then: V alM1,s1(ϕ) = V alM2,s2(ϕ)

Proof. By induction over terms and formulas.
First we show that all S-terms t have the following property P:

For all M1 = (D, I1),M2 = (D, I2), s1, s2:
If I1(c) = I2(c) for all c in t
I1(f) = I2(f) for all f in t
s1(x) = s2(x) for all x in t

then: V alM1,s1(t) = V alM2,s2(t)

This can be proven as follows:

t = c: If I1(c) = I2(c) for all c in t, I1(f) = I2(f) for all f in t,
s1(x) = s2(x) for all x in t, then
V alM1,s1(c) = I1(c) = I2(c) = V alM2,s2(c).

t = x: If I1(c) = I2(c) for all c in t, I1(f) = I2(f) for all f in t,
s1(x) = s2(x) for all x in t, then
V alM1,s1(x) = s1(x) = s2(x) = V alM2,s2(x).

126

t = f(t1, . . . , tn): Assume that t1, . . . , tn have property P:

If I1(c) = I2(c) for all c in t, I1(f) = I2(f) for all f in t,
s1(x) = s2(x) for all x in t, then
V alM1,s1(f(t1, . . . , tn)) =
I1(f)(V alM1,s1(t1), . . . , V alM1,s1(tn)) =
(by the “if”-part and by the inductive assumption)
I2(f)(V alM2,s2(t1), . . . , V alM2,s2(tn)) =
V alM2,s2(f(t1, . . . , tn)).

Next we show that all S-formulas ϕ have the following property P:

For all M1 = (D, I1),M2 = (D, I1), s1, s2:
If I1(c) = I2(c) for all c in ϕ
I1(f) = I2(f) for all f in ϕ
I1(P) = I2(P) for all P in ϕ
s1(x) = s2(x) for all x ∈ free(ϕ)

then: V alM1,s1(ϕ) = V alM2,s2(ϕ)

This can be proven as follows (we show it for representative cases):

ϕ = P (t1, . . . , tn): If I1(c) = I2(c) for all c in ϕ, I1(f) = I2(f) for all f in ϕ, I1(P) =
I2(P) for all P in ϕ, s1(x) = s2(x) for all x ∈ free(ϕ) then
V alM1,s1(P (t1, . . . , tn)) = 1 iff
(V alM1,s1(t1), . . . , V alM1,s1(tn)) ∈ I1(P) iff
(by the “if”-part and by what we have shown before for terms t;
note that free(ϕ) = var(ϕ) for atomic ϕ)
(V alM2,s2(t1), . . . , V alM2,s2(tn)) ∈ I2(P) iff
V alM2,s2(P (t1, . . . , tn)) = 1.

ϕ = ¬ψ: Assume that ψ has the property P:

If I1(c) = I2(c) for all c in ϕ, I1(f) = I2(f) for all f in ϕ, I1(P) =
I2(P) for all P in ϕ, s1(x) = s2(x) for all x ∈ free(ϕ) then
V alM1,s1(¬ψ) = 1 iff
V alM1,s1(ψ) = 0 iff
(by the inductive assumption)
V alM2,s2(ψ) = 0 iff
V alM2,s2(¬ψ) = 1.

127

ϕ = ∃xψ: Assume that ψ has the property P:

If I1(c) = I2(c) for all c in ϕ, I1(f) = I2(f) for all f in ϕ, I1(P) =
I2(P) for all P in ϕ, s1(x) = s2(x) for all x ∈ free(ϕ) then
V alM1,s1(∃xψ) = 1 iff
there is a d ∈ D, such that V alM1,s1

d
x
(ψ) = 1 iff

(by the inductive assumption)
there is a d ∈ D, such that V alM2,s2

d
x
(ψ) = 1 iff

V alM2,s2(∃xψ) = 1.

128

7.3 Solutions to Problem Set 3

1. The convergence of a real-valued sequence (xn) to a limit x is usually
defined as follows:

(Conv) For all ε > 0 there is a natural number n, such that for all
natural numbers m > n it holds that: |xm − x| < ε

Represent (Conv) in a first-order language by choosing an appropriate
symbol set S and define the corresponding S-model.

Hint: (i) Real sequences are functions from N to R, i.e., you may con-
sider xm as being of the form f(m); f can be regarded as being defined
on R even though only its values for members of N are “relevant”.
(ii) |xm − x| may either be considered as the result of applying a bi-
nary “distance” function to the arguments xm and x or as the result
of applying two functions – subtraction and absolute value – to these
arguments.

Answer: We choose S = {0, d, >,N, f}.
Let D = R, I(0) = 0, I(d) : R × R → R with I(d)(a, b) = |a − b|,
I(>) is the >-relation on R, I(N) = N, I(f) is a function from R to
R; note that with regard to arguments n ∈ N, the function I(f) is a
real-valued sequence on N that maps n to I(f)(n).
So we can represent (Conv) from above as:

∀v0(v0 > 0→ ∃v1(N(v1) ∧ ∀v2(N(v2) ∧ v2 > v1 → v0 > d(f(v2), x))))

(where x is a variable distinct from v0, v1, v2).

2. (This problem counts for award of CREDIT POINTS.)
Show that for arbitrary S-formulas ϕ, ψ, ρ, and arbitrary sets Φ of
S-formulas the following is the case:

(a) (ϕ ∨ ψ) � ρ iff ϕ � ρ and ψ � ρ:
(“⇒”) Assume that (ϕ ∨ ψ) � ρ.
So for all M, s: if M, s |= ϕ ∨ ψ then M, s |= ρ.
Now suppose M, s |= ϕ: then M, s |= ϕ ∨ ψ and thus by assump-
tion M, s |= ρ. It follows that ϕ � ρ.
(Analogously for ψ � ρ).

129

(“⇐”) Assume that ϕ � ρ and ψ � ρ, i.e., for all M, s: if M, s |= ϕ
then M, s |= ρ, and for all M, s: if M, s |= ψ then M, s |= ρ.
Now suppose M, s |= ϕ ∨ ψ: then either (i) M, s |= ϕ or (ii)
M, s |= ψ; in either case, by assumption, M, s |= ρ.
It follows that ϕ ∨ ψ � ρ.

(b) Φ ∪ {ϕ} � ψ iff Φ � (ϕ→ ψ):
(“⇒”) Assume that Φ∪{ϕ} � ψ. So for all M, s: if M, s |= Φ∪{ϕ}
then M, s |= ψ.
Now suppose M, s |= Φ; then there are two possible cases:

Case 1: M, s 6|= ϕ. But then M, s |= ϕ→ ψ.
Case 2: M, s |= ϕ. But then M, s |= Φ ∪ {ϕ}, which implies by
assumption that M, s |= ψ and thus M, s |= ϕ→ ψ.
In either case, M, s |= ϕ→ ψ.
So it follows that Φ � ϕ→ ψ.
(“⇐”) Assume that Φ � ϕ→ ψ. Hence, for all M, s: if M, s |= Φ
then M, s |= ϕ→ ψ.
Now suppose M, s |= Φ ∪ {ϕ}; then M, s |= Φ, so by assumption
M, s |= ϕ → ψ. Since both M, s |= ϕ and M, s |= ϕ → ψ, it
follows that M, s |= ψ.
But that means Φ ∪ {ϕ} � ψ.

(c) ϕ � ψ (i.e., {ϕ} � ψ) iff (ϕ→ ψ) is logically true:
By 2b, ∅ ∪ {ϕ} � ψ iff ∅ � ϕ→ ψ, i.e.,
ϕ � ψ iff ∅ � ϕ→ ψ.
But by the lemma in our section on semantic concepts, the latter
is equivalent to saying that ϕ→ ψ is logically true.

3. (a) Prove for arbitrary S-formulas ϕ, ψ:

∃x∀yϕ � ∀y∃xϕ
Proof. Strictly, we have to deal with two cases: (i) the variables
x and y being distinct, or (ii) x = y.
Case 1: Let x 6= y and M, s |= ∃x∀yϕ:
By the definition of V al it follows that
there is a d1 ∈ D, such that M, sd1

x
|= ∀yϕ, which in turn implies

that there is a d1 ∈ D, such that for all d2 ∈ D: M, (sd1

x
)d2

y
|= ϕ.

Not let d4 ∈ D be chosen arbitrarily. Furthermore, let d3 be such
that for all d2 ∈ D: M, (sd3

x
)d2

y
|= ϕ (such a d3 must exist by what

we said before).

130

But then it must also be the case that M, (sd3

x
)d4

y
|= ϕ.

So we found that for all d4 ∈ D there is a d3 ∈ D with:
M, (sd3

x
)d4

y
|= ϕ.

Since x 6= y, we can also write this as follows:
for all d4 ∈ D there is a d3 ∈ D with M, (sd4

y
)d3

x
|= ϕ.

By the definition of V al again, we have:
for all d4 ∈ D, M, sd4

y
|= ∃xϕ, and thus M, s |= ∀y∃xϕ.

Case 2: Let x = y and M, s |= ∃x∀yϕ:
As above it follows that there is a d1 ∈ D, such that for all d2 ∈ D:
M, (sd1

x
)d2

y
|= ϕ.

Because of x = y, (sd1

x
)d2

y
= sd2

x
.

So we actually have that for all d2 ∈ D: M, sd2

y
|= ϕ.

Therefore, since D 6= ∅, there is a d2 ∈ D such that M, sd2

y
|= ϕ,

which implies trivially that
for all d1 ∈ D there is a d2 ∈ D such that M, (sd1

x
)d2

y
|= ϕ, i.e.,

M, s |= ∀y∃xϕ.

Summing up both cases, we find that ∃x∀yϕ � ∀y∃xϕ.

(b) Show that the following is not the case for all S-formulas ϕ, ψ:

∀y∃xϕ � ∃x∀yϕ
Proof. Consider ϕ = P (x, y), D = N, I(P) = >-relation on N,
M = (D, I):
then M |= ∀y∃xP (x, y), but M 6|= ∃x∀yP (x, y).

4. (a) Prove for all S-formulas ϕ, ψ:

∃x(ϕ ∨ ψ) is logically equivalent to ∃xϕ ∨ ∃xψ.

(Proof: Immediate from the definition of V al.)

(b) Show that the following is not the case for all S-formulas ϕ, ψ:

∃x(ϕ ∧ ψ) is logically equivalent to ∃xϕ ∧ ∃xψ.

Proof. Consider ϕ = P (x), ψ = Q(x), D = N, let I(P) be the set
of even natural numbers, I(Q) be the set of odd natural numbers,
M = (D, I):
then M |= ∃xP (x) ∧ ∃xQ(x), but M 6|= ∃x(P (x) ∧Q(x)).

5. Let Φ be an S-formula set, let ϕ und ψ be S-formulas. Show:

If Φ ∪ {ϕ} � ψ and Φ � ϕ, then Φ � ψ.

131

Proof. Assume that Φ ∪ {ϕ} � ψ and Φ � ϕ:
let M, s |= Φ; then by the second assumption M, s |= ϕ, hence M, s |=
Φ ∪ {ϕ}, which implies by the first assumption that M, s |= ψ.
It follows that Φ � ψ.

6. A set Φ of S-sentences is called “independent if and only if there is no
ϕ ∈ Φ such that: Φ\ {ϕ} � ϕ (i.e., ϕ is not “redundant”, because it is
impossible to conclude ϕ from Φ\ {ϕ}).
Prove: (a) the set of the three group axioms and (b) the set of the three
axioms for equivalence structures are both independent (see chapter one
for these axioms).

Proof. Concerning (a):

G1 ∀x∀y∀z (x ◦ y) ◦ z = x ◦ (y ◦ z)

G2 ∀x x ◦ e = x

G3 ∀x∃y x ◦ y = e

(i) {G1,G2} 6|= G3: consider D = Z, I(◦) = multiplication in Z, I(e) = 1;
then M = (D, I) |= {G1,G2}, but M = (D, I) 6|= G3.

(ii) {G1,G3} 6|= G2: consider D = Q \ {0}, I(◦) = multiplication in Q,
I(e) = 5; then M = (D, I) |= {G1,G3}, but M = (D, I) 6|= G2.

(iii) {G2,G3} 6|= G1: consider D = {d0, d1, d2} for pairwise distinct d0, d1, d2,
I(e) = d0, such that I(◦) is given by the following multiplication table:

I(◦) d0 d1 d2

d0 d0 d1 d2

d1 d1 d0 d1

d2 d2 d2 d0

then M = (D, I) |= {G2,G3}, but M = (D, I) 6|= G1 (to see the latter,
consider a multiplication of d2, d1, and d2).

132

Concerning (b):

A1 ∀x x ≈ x

A2 ∀x∀y (x ≈ y → y ≈ x)

A3 ∀x∀y∀z (x ≈ y ∧ y ≈ z → x ≈ z)

(i) {A1,A2} 6|= A3: consider D = {d0, d1, d2} for pairwise distinct d0, d1, d2,
I(≈) = {(d0, d0), (d1, d1), (d2, d2), (d0, d1), (d1, d0), (d1, d2), (d2, d1)};
then M = (D, I) |= {A1,A2}, but M = (D, I) 6|= A3.

(ii) {A1,A3} 6|= A2: consider D = {d0, d1} for distinct d0, d1, with
I(≈) = {(d0, d0), (d1, d1), (d0, d1)};
then M = (D, I) |= {A1,A3}, but M = (D, I) 6|= A2.

(iii) {A2,A3} 6|= A1: consider D = {d0}, I(≈) = ∅;
then M = (D, I) |= {A2,A3}, but M = (D, I) 6|= A1.

133

7.4 Solutions to Problem Set 4

1. (a) [∃v0∃v1(P (v0, v2) ∧ P (v1, v3))]
v2 v2 v2

v0 v1 v3

= ∃v0 [∃v1(P (v0, v2) ∧ P (v1, v3))]
v2 v0

v3 v0

= ∃v0∃v1 [(P (v0, v2) ∧ P (v1, v3))]
v2 v1

v3 v1

= ∃v0∃v1(P (v0, v2) ∧ P (v1, v2))

(b) [∃v0∃v1(P (v0, v2) ∧ P (v1, v3))]
v3 f(v2, v3)
v2 v3

= ∃v0 [∃v1(P (v0, v2) ∧ P (v1, v3))]
v3 f(v2, v3) v0

v2 v3 v0

= ∃v0∃v1 [(P (v0, v2) ∧ P (v1, v3))]
v3 f(v2, v3) v1

v2 v3 v1

= ∃v0∃v1(P (v0, v3) ∧ P (v1, f(v2, v3)))

(c) [∃v0∃v1(P (v0, v2) ∧ P (v1, v3))]
v2 v0 f(v2, v3)
v0 v2 v3

= ∃v4 [∃v1(P (v0, v2) ∧ P (v1, v3))]
v0 f(v2, v3) v4

v2 v3 v0

= ∃v4∃v1 [(P (v0, v2) ∧ P (v1, v3))]
v0 f(v2, v3) v4 v1

v2 v3 v0 v1

= ∃v4∃v1(P (v4, v0) ∧ P (v1, f(v2, v3)))

(d) [∀v0∃v1(P (v0, v1) ∧ P (v0, v2)) ∨ ∃v2f(v2, v2) ≡ v0]
v0 f(v0, v1)
v0 v2

:

At first we consider the left part of the given ∨-formula:

[∀v0∃v1(P (v0, v1) ∧ P (v0, v2))]
v0 f(v0, v1)
v0 v2

= ∀v3 [∃v1(P (v0, v1) ∧ P (v0, v2))]
f(v0, v1) v3

v2 v0

= ∀v3∃v4 [(P (v0, v1) ∧ P (v0, v2))]
f(v0, v1) v3 v4

v2 v0 v1

= ∀v3∃v4(P (v3, v4) ∧ P (v3, f(v0, v1)))

Secondly, we consider the right part of the given ∨-formula:

134

[∃v2f(v2, v2) ≡ v0]
v0 f(v0, v1)
v0 v2

= ∃v2 [f(v2, v2) ≡ v0]
v2

v2

= ∃v2f(v2, v2) ≡ v0

By connecting the two partial solutions by means of ∨ we get the
final result, i.e.:

∀v3∃v4(P (v3, v4) ∧ P (v3, f(v0, v1))) ∨ ∃v2f(v2, v2) ≡ v0

2. Let t0, . . . , tn be S-terms, x0, . . . , xn pairwise distinct variables, ϕ an
S-formula and y a variable.

Prove:

(a) If π is a permutation of the numbers 0, . . . , n, then:

ϕ
t0, . . . , tn
x0, . . . , xn

= ϕ
tπ(0), . . . , tπ(n)

xπ(0), . . . , xπ(n)

Proof. Strictly, this is shown first by induction over terms t and
then by induction over formulas ϕ (the latter yields the proof of
the claim above). But this time – instead of writing down all
the details of the two inductive proofs – we will just informally
“check” whether the order of terms/variables can have any effect
on the outcome of a substitution. [If you have done so using just
two or three lines of comment, that’s fine.]
In the basic cases of substitution within terms, there is no such
effect, i.e.:

• [x] t0,...,tn
x0,...,xn

:=

{
ti for x = xi (0 ≤ i ≤ n)
x else

= [x]
tπ(0),...,tπ(n)

xπ(0),...,xπ(n)

• [c] t0,...,tn
x0,...,xn

:= c = [c]
tπ(0),...,tπ(n)

xπ(0),...,xπ(n)

Therefore, the order in which terms are substituted for variables
cannot affect the outcome of a substitution within a function term
(using the inductive assumption for its subterms) and thus it does
not have any effect within any term whatsoever. Because the
substitution of terms for variables within atomic formulas is by
definition given by the substitution of terms for variables within

135

terms, the order also does not play a role for substitutions within
atomic formulas. Moreover, since the substitution of terms for
variables within negation, disjunction, conjunction, implication,
and equivalence formulas is by definition reduced to the substi-
tution of terms for variables within their subformulas, the order
of variables does not play a role for substitution within them as
long as it does not play a role for the subformulas (this is where
the inductive assumption on subformulas would be applied). The
remaining case is the case for quantified formulas: there we have

• [∃xϕ] t0,...,tn
x0,...,xn

:= ∃u [ϕ]
ti1 ,...,tik ,u

xi1 ,...,xik ,x
= [∃xϕ]

tπ(0),...,tπ(n)

xπ(0),...,xπ(n)

given that the order in which terms are substituted for variables
within the subformula ϕ is irrelevant, which is guaranteed by the
inductive assumption again (accordingly for universally quantified
formulas). So we are done.

(b) If y ∈ var(t t0, . . . , tn
x0, . . . , xn

), then

i. y ∈ var(t0) ∪ . . . ∪ var(tn) or

ii. y ∈ var(t) and y 6= x0, . . . , xn.

Proof. By induction over terms t:
Induction basis:

• t = x:
Case 1: x 6= x0, . . . , xn.

Then [t] t0,...,tn
x0,...,xn

= x, so if y ∈ var(t t0, . . . , tn
x0, . . . , xn

) then y must

be identical to x and thus y 6= x0, . . . , xn.

Case 2: x = xi (for some i ∈ {0, . . . , n}).

Then [t] t0,...,tn
x0,...,xn

= ti; therefore, if y ∈ var(t t0, . . . , tn
x0, . . . , xn

) then

y ∈ var(ti) ⊆ var(t0) ∪ . . . ∪ var(tn).

• t = c:

there is no y ∈ var(t t0, . . . , tn
x0, . . . , xn

), so we are done (trivially).

Now consider t = f(t′1, . . . , t
′
m) and assume that t′1, . . . , t

′
m have

the property stated in 2a.

136

Suppose y ∈ var(t t0, . . . , tn
x0, . . . , xn

):

It follows that y ∈ var
(
f
(

[t′1] t0,...,tn
x0,...,xn

, . . . , [t′m] t0,...,tn
x0,...,xn

))
, and hence

that y ∈ var([t′1] t0,...,tn
x0,...,xn

) ∪ . . . ∪ var([t′m] t0,...,tn
x0,...,xn

).

By the inductive assumption, it follows that

(y ∈ var(t0) ∪ . . . ∪ var(tn) or y ∈ var(t′1) and y 6= x0, . . . , xn) or
...

(y ∈ var(t0) ∪ . . . ∪ var(tn) or y ∈ var(t′m) and y 6= x0, . . . , xn),

which finally implies:

y ∈ var(t0) ∪ . . . ∪ var(tn) or

y ∈ var(t) and y 6= x0, . . . , xn

(since t = f(t′1, . . . , t
′
m)).

137

7.5 Solutions to Problem Set 5

1. (This problem counts for award of CREDIT POINTS.)

Are the following rules correct?

(a)
Γ ϕ1 ψ1

Γ ϕ2 ψ2

Γ ϕ1 ∨ ϕ2 ψ1 ∨ ψ2

This rule is correct :

Assume that Γϕ1 ψ1, Γϕ2 ψ2 are correct, i.e., Γ ∪ {ϕ1} |= ψ1 and
Γ∪{ϕ2} |= ψ2. Now we show that in this case also Γϕ1∨ϕ2 ψ1∨ψ2

is correct, i.e., Γ ∪ {ϕ1 ∨ ϕ2} |= ψ1 ∨ ψ2. For consider arbitrary
M, s with M, s |= Γ ∪ {ϕ1 ∨ ϕ2}: it follows that either (i) M, s |=
Γ ∪ {ϕ1} or (ii) M, s |= Γ ∪ {ϕ2}. Since Γ ∪ {ϕ1} |= ψ1 and
Γ∪{ϕ2} |= ψ2 it must be the case that either (i) M, s |= Γ∪{ψ1}
or (ii) M, s |= Γ∪ {ψ2}. In either case, M, s |= Γ∪ {ψ1 ∨ψ2} and
thus we are done.

(b)
Γ ϕ1 ψ1

Γ ϕ2 ψ2

Γ ϕ1 ∨ ϕ2 ψ1 ∧ ψ2

This rule is not correct:

Consider the following exemplary instance of the rule:

P (c) P (c)
¬P (c) ¬P (c)
P (c) ∨ ¬P (c) P (c) ∧ ¬P (c)

(Γ is chosen to be empty).

Obviously, both premises are correct while the conclusion is not
(as far as the latter is concerned, any model whatsoever for the
symbol set S = {P, c} is a counterexample).

2. Derive the following (auxiliary) rules from the rules of the sequent
calculus:

(a)
Γ ϕ
Γ ¬¬ϕ

138

1. Γϕ (Premise)

2. Γ¬ϕ¬ϕ (Ass.)

3. Γϕ¬¬ϕ (CP 2) with 2.

4. Γ¬¬ϕ (CS) with 1., 3.

(b)
Γ ¬¬ϕ
Γ ϕ

1. Γ¬¬ϕ (Premise)

2. Γ¬ϕ¬ϕ (Ass.)

3. Γ¬ϕ¬¬ϕ (Ant.) with 1.

4. Γϕ (CD) with 2., 3.

(c)
Γ ϕ
Γ ψ
Γ ϕ ∧ ψ

1. Γϕ (Premise)

2. Γψ (Premise)

3. Γ¬ϕ ∨ ¬ψ ¬ϕ ∨ ¬ψ (Ass.)

4. Γ¬ϕ ∨ ¬ψ ϕ (Ant.) with 1.

5. Γ¬ϕ ∨ ¬ψ ¬¬ϕ (2a) with 4.

6. Γ¬ϕ ∨ ¬ψ ¬ψ (DS) with 3., 5.

7. Γ¬ϕ ∨ ¬ψ ψ (Ant.) with 2.

8. Γ¬ϕ ∨ ¬ψ ¬(¬ϕ ∨ ¬ψ) (Triv.) with 7., 6.

9. Γ¬(¬ϕ ∨ ¬ψ) ¬(¬ϕ ∨ ¬ψ) (Ant.)

10.Γ¬(¬ϕ ∨ ¬ψ)︸ ︷︷ ︸
ϕ∧ψ

(PC) with 8., 9.

(d)
Γ ϕ ψ
Γ ϕ→ ψ

139

1. Γϕψ (Premise)

2. Γϕ ¬ϕ ∨ ψ (∨-Con.) with 1.

3. Γ¬ϕ ¬ϕ (Ass.)

4. Γ¬ϕ ¬ϕ ∨ ψ (∨-Con.) with 3.

5. Γ¬ϕ ∨ ψ︸ ︷︷ ︸
ϕ→ψ

(PC) with 2., 4.

(e)
Γ ϕ ∧ ψ
Γ ϕ

1. Γ¬(¬ϕ ∨ ¬ψ)︸ ︷︷ ︸
ϕ∧ψ

(Premise)

2. Γ¬ϕ ¬ϕ (Ass.)

3. Γ¬ϕ ¬ϕ ∨ ¬ψ (∨-Con.) with 2.

4. Γ¬ϕ ¬(¬ϕ ∨ ¬ψ) (Ant.) with 1.

5. Γ¬ϕ ϕ (Triv.) with 3., 4.

6. Γϕ ϕ (Ass.)

7. Γϕ (PC) with 6., 5.

(f)
Γ ϕ ∧ ψ
Γ ψ

Analogous to 2e!

3. Are the following rules correct?

(a)
ϕ ψ
∃xϕ ∃xψ

This rule is correct :

Assume that ϕψ is correct, i.e., {ϕ} |= ψ. We show that in this
case also ∃xϕ ∃xψ is correct, i.e., {∃xϕ} |= ∃xψ. For consider
arbitrary M, s with M, s |= ∃xϕ: it follows that there is a d in
the domain of M, such that M, s d

x
|= ϕ. Since {ϕ} |= ψ, we have

M, s d
x
|= ψ and hence M, s |= ∃xψ.

140

(b)
Γ ϕ ψ
Γ ∀xϕ ∃xψ

This rule is correct :

Assume that Γϕψ is correct, i.e., Γ∪{ϕ} |= ψ. We prove that this
implies that Γ∀xϕ ∃xψ is correct, i.e., Γ∪{∀xϕ} |= ∃xψ. Consider
arbitrary M, s with M, s |= Γ∪ {∀xϕ}: it follows that for all d in
the domain of M: M, s d

x
|= ϕ. Therefore, it is of course also the

case that M, s |= ϕ (simply take d := s(x)). So M, s |= Γ ∪ {ϕ}
and by Γ∪{ϕ} |= ψ it follows that M, s |= Γ∪{ψ}. So there must
also be a d in the domain of M, such that M, s d

x
|= ψ (namely

d := s(x)). We conclude that M, s |= ∃xψ and we are done.

4. Derive the following (auxiliary) rules from the rules of the sequent
calculus:

(a)
Γ ∀xϕ
Γ ϕ t

x

1. Γ¬∃x¬ϕ︸ ︷︷ ︸
∀xϕ

(Premise)

2. Γ¬ϕ t
x
¬ϕ t

x
(Ass.)

3. Γ¬ϕ t
x
∃x¬ϕ (∃-Con.) with 2.

4. Γ¬ϕ t
x
¬∃x¬ϕ (Ant.) with 1.

5. Γϕ t
x

(CD) with 3., 4.

(b)
Γ ∀xϕ
Γ ϕ

Use 4a with t := x!

(c)
Γ ϕ t

x
ψ

Γ ∀xϕ ψ

1. Γϕ t
x
ψ (Premise)

2. Γ¬∃x¬ϕ ¬ϕ t
x
¬ϕ t

x
(Ass.)

3. Γ¬∃x¬ϕ ¬ϕ t
x
∃x¬ϕ (∃-Con.) with 2.

141

4. Γ¬∃x¬ϕ ¬ϕ t
x
¬∃x¬ϕ (Ass.)

5. Γ¬∃x¬ϕ ϕ t
x

(CD) with 3., 4.

6. Γ¬∃x¬ϕ ϕ t
x
ψ (Ant.) with 1.

7. Γ¬∃x¬ϕ︸ ︷︷ ︸
∀xϕ

ψ (CS) with 6., 5.

(d)
Γ ϕ y

x

Γ ∀xϕ if y is not free in the sequent Γ ∀xϕ.

1. Γϕ y
x

(Premise)

2. Γ¬ϕ y
x
¬ϕ y

x
(Ass.)

3. Γ¬ϕ y
x
ϕ y
x

(Ant.) with 1.

4. Γ¬ϕ y
x
¬∃x¬ϕ (Triv.) with 3., 2.

5. Γ∃x¬ϕ ¬∃x¬ϕ (∃-Ant.) with 4. X

6. Γ¬∃x¬ϕ ¬∃x¬ϕ (Ass.)

7. Γ¬∃x¬ϕ︸ ︷︷ ︸
∀xϕ

(PC) with 5., 6.

(e)
Γ ϕ ψ
Γ ∀xϕ ψ

1. Γϕ ψ (Premise)

2. Γ¬ϕ ¬ϕ (Ass.)

3. Γ¬ϕ ∃x¬ϕ (∃-Con.) with 2.

4. Γ¬∃x¬ϕ ϕ (CP 3) with 3.

5. Γ¬∃x¬ϕ ϕ ψ (Ant.) with 1.

6. Γ¬∃x¬ϕ︸ ︷︷ ︸
∀xϕ

ψ (CS) with 4., 5.

(f)
Γ ϕ
Γ ∀xϕ if x is not free in the sequent Γ.

Use 4d with y := x!

142

7.6 Solutions to Problem Set 6

1. Let S be an arbitrary symbol set.

Let Φ = {v0 ≡ t |t ∈ TS } ∪ {∃v1∃v2¬ v1 ≡ v2}.
Show:

• Φ is consistent

• there is no formula set Ψ ⊆ FS with Ψ ⊇ Φ, such that Ψ is
consistent and contains instances.

Proof.

(a) Φ is consistent as it is satisfied by e.g. the following model M =
(D, I):
Let D = {1, 2}; let I(c) = 1 for all constants c in S, let s(x) = 1
for all variables x, and for all n-ary function signs f in S let
I(f) : Dn → D with I(f)(d) = 1 for arbitrary d ∈ D. Since
obviously V alM,s(t) = 1 for all terms t and since D contains more
than just one element, it follows that M, s |= Φ.

(b) Consider an arbitrary formula set Ψ ⊆ FS with Ψ ⊇ Φ, such that
Ψ contains instances:
Because Ψ contains instances, there must be S-terms t, t′, such
that

• ∃v1∃v2¬v1 ≡ v2 → ∃v2¬t ≡ v2

• ∃v2¬t ≡ v2 → ¬t ≡ t′

Since ∃v1∃v2¬v1 ≡ v2 ∈ Φ ⊆ Ψ, it follows that ¬t ≡ t′ is derivable
from Ψ (by two applications of modus ponens).
But at the same time v0 ≡ t and v0 ≡ t′ are members of Φ ⊆ Ψ by
assumption. By applying the rules Symm. (symmetry of identity)
and Trans. (transitivity of identity) of the sequent calculus (or
alternatively the rule Sub. of substitution of identicals), we can
thus derive t ≡ t′ from Ψ. But this means that Ψ is inconsistent
and so we are done.

143

2. (This problem counts for award of CREDIT POINTS.)
Explain why the following logical implication holds:

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y) �

∀x∀y(∀z(z ∈ x↔ z ∈ y)↔ x = y)

Answer: ∀x∀y(x = y → ∀z(z ∈ x ↔ z ∈ y)) is logically true, i.e., sat-
isfied in every model whatsoever! Therefore, it is also logically implied
by every formula, which means that

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y) �

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)∧∀x∀y(x = y → ∀z(z ∈ x↔ z ∈ y))

is the case. But the latter formula is obviously logically equivalent to

∀x∀y(∀z(z ∈ x↔ z ∈ y)↔ x = y)

(Note that strictly we should have used ≡ again instead of =, but never
mind. . .)

3. Prove: A map with countably many countries can be coloured by using
at most four colours if and only if each of its finite submaps can be
coloured by using at most four colours.

(Hint: choose a symbol set S in which ever constant represents a coun-
try, in which there are four unary predicates that represent four colours,
and in which there is a binary predicate that stands for the neighbour-
hood relation between countries; represent maps as sets of formulas for
this symbol set; apply the compactness theorem.)

Proof. Let a map M with countably many countries be given. We
can concentrate on the interesting case, i.e., where M has a countably
infinite set of countries 0, 1, 2,

Choose S = SM as follows:

• c0, c1, c2, . . .: constants representing countries 0, 1, 2, . . . in M

• R,B,G,W : unary predicates representing colours

• N : binary predicate representing the neighbourhood of countries
in M

144

Let ΦM ⊆ FS be defined as follows:

• ¬ci ≡ cj ∈ ΦM for all pairwise distinct indices i, j ∈ N0

• N(ci, cj) ∈ ΦM iff
the i-th country is a neighbour of the j-th country in M

• ¬N(ci, cj) ∈ ΦM iff
the i-th country is not a neighbour of the j-th country in M

• The following sentence is a member of ΦM :

∀x((R(x) ∧ ¬B(x) ∧ ¬G(x) ∧ ¬W (x))∨
(¬R(x) ∧B(x) ∧ ¬G(x) ∧ ¬W (x))∨
(¬R(x) ∧ ¬B(x) ∧G(x) ∧ ¬W (x))∨
(¬R(x) ∧ ¬B(x) ∧ ¬G(x) ∧W (x)))

• The following sentence is a member of ΦM :

∀x∀y(N(x, y)→
(¬(R(x) ∧R(y))∧
¬(B(x) ∧B(y))∧
¬(G(x) ∧G(y))∧
¬(W (x) ∧W (y))))

• ΦM does not have any further members.

Then M is represented by ΦM , every finite submap Mn of M with
countries 0, . . . , n is represented by the set of sentences of ΦMn in which
none of the constants cn+1, cn+2, . . . occurs.

So we can prove the right-to-left direction of the statement above (the
other direction is trivial): assume every finite submap Mn can be
coloured by means of four colours (or less). Translated into sets of
formulas, this means that every subset of ΦM that is of the form ΦMn

is satisfiable. Since every finite subset of ΦM is a subset of a set of
the form ΦMn for some n, it follows that every finite subset of ΦM is
satisfiable. Hence, by the compactness theorem, ΦM is satisfiable and
thus M can be coloured by means of four colours (or less).

145

4. Let P be a binary predicate in S.

Prove that the formula

∀x¬P (x, x) ∧ ∀x∀y∀z(P (x, y) ∧ P (y, z)→ P (x, z)) ∧ ∀x∃yP (x, y)

can only be satisfied by infinite models.

Proof. Assume M = (D, I) satisfies this formula:

• D 6= ∅ (by definition of model), so there is a d0 ∈ D which think
of held fixed.

• Since M |= ∀x∃yP (x, y) there must be a d1 ∈ D such that
(d0, d1) ∈ I(P). d1 cannot be identical to d0 because M |=
∀x¬P (x, x).

• Let us assume it is true that there are pairwise distinct d0, . . . , dn
(for 0 ≤ n) which are members of D and for which it is the case
that (d0, d1), (d1, d2), . . . , (dn−1, dn) ∈ I(P):
Since M |= ∀x∃yP (x, y) there must be a dn+1 ∈ D such that
(dn, dn+1) ∈ I(P).

dn+1 cannot be identical to any of the dk for k ≤ n+1 for otherwise
it would follow that (dk, dk+1), (dk+1, dk+2), . . . , (dn−1, dn), (dn, dk) ∈
I(P): but then by M |= ∀x∀y∀z(P (x, y) ∧ P (y, z) → P (x, z)) it
would be the case that (dk, dk) ∈ I(P), which would contradict
M |= ∀x¬P (x, x).
It follows that there are pairwise distinct d0, . . . , dn+1 which are
members of D and for which it is the case that (d0, d1), (d1, d2), . . . ,
(dn, dn+1) ∈ I(P).

But this implies that for every n there are pairwise distinct members
d0, . . . , dn of D. Hence, D is infinite.

5. Prove: there is no formula ϕ, such that for all models M = (D, I) and
for all variable assignments s holds:

M, s � ϕ if and only if D is infinite.

(Hint: use the compactness theorem.)

Proof. Assume for contradiction that there is such a ϕ:

so, M, s |= ¬ϕ iff D is finite (for arbitrary M, s).

146

Now consider the formula set Φ = {¬ϕ} ∪ {ψ≥n|n ≥ 2}, where

ψ≥n := ∃v1 . . . ∃vn(¬v1 ≡ v2 ∧ . . . ∧ ¬vi ≡ vj ∧ . . . ∧ ¬vn−1 ≡ vn)

(for i 6= j with 1 ≤ i, j,≤ n).

Note that M, s � ψ≥n if and only if D has n or more members (for
arbitrary M, s).

It follows that every finite subset of Φ is satisfiable (by choosing a model
with a sufficiently large domain). Therefore, the compactness theorem
implies that Φ is satisfiable. So there are M, s which satisfy Φ; fix one
such model M = (D, I):

Since M, s |= ¬ϕ, D must be finite, i.e., for some n the set D is of
cardinality n: but then M, s 6|= ψ≥n+1. However, ψ≥n+1 ∈ Φ and Φ is
satisfied by M, s, which implies M, s |= ψ≥n+1. Contradiction.

147

