
Information and Coding

Karl Petersen

January 17, 2018

1

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

Contents

Contents 2

1 Introduction 3

2 A few questions 9

3 Writing 11

4 Counting 13
4.1 Disjoint sets . 13
4.2 Cartesian products . 13
4.3 Permutations . 14
4.4 Subsets (Combinations) . 15
4.5 A Few More Counting Principles . 17

5 Some elementary probability 19
5.1 Probability spaces . 19
5.2 Conditional probability . 20
5.3 Bayes’ Theorem . 22
5.4 Bernoulli trials . 23
5.5 Markov chains . 25
5.6 Space mean and time mean . 28
5.7 Stationary and ergodic information sources . 30

6 Number theory and cryptography 33
6.1 Modular arithmetic . 33
6.2 Common divisors and the Euclidean Algorithm . 34
6.3 Finding modular multiplicative inverses . 36
6.4 The RSA public-key cryptosystem . 38
6.5 The mathematics behind the RSA cryptographic system 41
6.6 Verification of the functioning of the RSA algorithm . 44
6.7 A few applications . 46

7 Shannon’s information theory 49
7.1 Information sources . 49
7.2 The possibility of information compression . 50
7.3 The entropy of a source . 52
7.4 The entropy of a language . 55
7.5 Source coding for compression . 55
7.6 The noisy channel: equivocation, transmission rate, capacity 57
7.7 Coding for error protection . 60
7.8 Comments on some related terms and concepts . 61

2

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

Part 1

Introduction

This is a collection of materials from a first-year seminar at the University of North Carolina, Chapel Hill,
which ran fairly regularly from 2000 to 2014. Prerequisites included high-school mathematics, curiosity,
and willingness to deal with unfamiliar ideas. The aim was to review the many facets of information,
coding, and cryptography, including their uses throughout history, their implications for modern life, and
their mathematical underpinnings. Readings from the books listed in the syllabus were supplemented
by these notes and current news articles. Classes consisted of discussions and demonstrations. Students
conducted group or individual research projects which resulted in written (and critically edited and
revised) papers and presentations to the seminar at the end of the term.

The following syllabus shows how the seminar progressed.

3

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

Mathematics 56H, T-Th 11:00-12:15, Phillips 228

Karl Petersen, Mathematics

Fall 2014

Satisfies QI Math Requirement. Students in the Honors Program have priority in

registration for this seminar.

Texts:
Simon Singh, The Code Book, Doubleday, 1999

Hans Christian von Baeyer, Information, The New Language of Science, Phoenix, 2004

James Gleick, The Information, Vintage, 2011

Also of interest: Hal Abelson, Ken Leeden, and Harry Lewis, Blown to Bits: Your Life,

Liberty, and Happiness after the Digital Explosion, Addison-Wesley, 2008

E-Reserve:

1. For All Practical Purposes, COMAP, W.H. Freeman, 2000: Chs. 9 & 10; 331-381

2. Masked Dispatches, US Government (NSA), 1992: Chs. 1,2,9,10; 11-24, 71-82

3. Invitation to Cryptology, Thomas H. Barr, Prentice Hall, 2002, Sections 2.7 and 2.8,

134-158.

4. Modern Cryptology: A Tutorial, Gilles Brassard, Springer-Verlag, Lecture Notes in

Computer Science 325, 1988: parts of Ch. 5, 40-53, 70-78, Bibliography (91-107)

5. Privacy on the Line, W. Diffie and S. Landau, MIT Press, 1998: Ch. 6, 125-150; Ch. 8,

183-203; Ch. 10, 225-245

6. Symbols, Signals and Noise: The Nature and Process of Communication, J. R. Pierce,

Harper Torchbooks, Harper & Row, New York, 1961: Ch. III, A Mathematical Model,

pp. 45-63; Ch. IV, Encoding and Binary Digits, 64-77; Ch. V, Entropy, 78-106; Ch.

VIII, The Noisy Channel, 145-165

 Online Notes by KEP at http://www.math.unc.edu/Faculty/petersen/:

1. Counting

2. Number Theory and Cryptography

3. Elementary Probability

4. Shannon’s Information Theory

Office Hours: T, Th 12:30-2 and by appointment, Phillips 300A. E-mail address:

petersen@math.unc.edu,

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

It is common to say that we are now living in the information age. What are the ways in

which information is stored, transmitted, presented, and protected? What is information

anyway? Topics for this seminar will be drawn from cryptography (secret writing

throughout history, including Thomas Jefferson's cipher machine, the German Enigma

machine, public-key systems, and security and privacy on the internet) and information

theory (entropy, information compression, and error correction). Further topics may

include symbolic dynamics (study of symbol streams and associated dynamical systems

and formal languages); applications like image compression and processing (compact

disks, MP3 and JPEG, transforms, error correction, noise removal); the manipulation and

analysis of the huge reams of data now being collected by science, industry, and

government (genomes, consumer research, intelligence data); and visualization (how can

different kinds of information be vividly and usefully presented, combined, and

compared?). These topics are mathematically accessible to anyone with a high-school

background and offer many possibilities for experimentation and theoretical exploration.

We will begin by reading, discussing, and working on the texts. There will be some

mathematical and computer exercises. (We will use software such as Matlab and

Mathematica, but no previous knowledge or experience of software or of programming is

assumed.) After developing this background, students will select individual or group

projects that could involve encoding and decoding messages, enhancing and compressing

images, transforming and filtering signals, measuring properties of information sources

(including analysis of artistic and literary objects), investigating current information-

related discoveries and issues, and so on. Each project should involve some independent

research, experimentation, and exploration and should contain a significant mathematical

component. For group projects, the contributions of each individual should be

identifiable. Students will present their proposals and results to the seminar orally and in

writing.

In this research-exposure course, you will be working with a Graduate Research

Consultant, Colin Thomson, who will assist you with the research project. [The GRC

Program is sponsored by the Office for Undergraduate Research

(www.unc.edu/depts/our), and you may be able to use this research-exposure course to

meet a requirement of the Carolina Research Scholars Program

(http://www.unc.edu/depts/our/students/students_crsp.html).] I encourage you to visit the

OUR website to learn about how you can engage in research, scholarship and creative

performance while you are at Carolina.

There will be a Quiz Tues. Sept. 16 and an Exam Tues. Nov. 18. The Final Exam is

scheduled for Thurs. Dec. 11 at 12 PM. However, in view of the special seminar nature of

this course, where the students are intensively involved throughout the semester and

prepare and present substantial individual research projects, the scheduled final exam will

be replaced by an alternative final assessment. The nature of this assessment will be

specified later in the semester. Part of the final exam time may be used for final project

presentations.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

We will agree on an extra regular weekly meeting time (such as late afternoon, say 5-7,

Wednesdays) for out-of-class experiences, such as installing Matlab and Mathematica,

working on assignments together, viewing films and videos, and so on.

Week Topics Readings Comment, Assignment

Aug. 19 Information, coding,

history, mathematics.

Mary, Queen of

Scots. Overview of

ciphers.

Singh 1; Counting 1-

3; Gleick Prologue

Classes start Tues. Aug. 19.

Counting 2.1-2.4.

Aug. 26 Vigenère

(polyalphabetic)

ciphers, cipher

machines.

Singh 2-3; Counting

4-5

Counting 3.1-3.3, 4.1-4.4.

Sept. 2 Modular arithmetic,

Enigma machine

Singh 4; Number

Theory 1

 Counting 5.1-5.4. Number

Theory 1.1. No classes Mon.

Sept. 1.

Sept. 9 Friedman and

Kasiski tests,

probability,

languages

Singh 5 ; Barr 2.7;

Prob Notes 1-2;

Gleick 2-4

 Prob 1.1-1.8, 2.1-2.5. Matlab

Assgt. 1 (basics). Barr 2.7: 2.

Sept. 16 Cryptanalysis of

Vigenère

Barr 2.8: pp. 143-top

of 149. vB Prologue,

1-6,8

 Barr 2.8: 1-3 (use M-files and

Caesar spreadsheet). Quiz Tues.

Sept. 16. Movie Wed. Sept. 17.

Sept. 23 Euclidean algorithm,

primes, modular

inverses. Information,

physics, philosophy.

Number Theory

Notes 2, 3; Gleick 8-

11

 Number Theory, Ex. 2-8.

Project proposals.

Sept. 30 Public keys, RSA Singh 6; FAPP 370-

376; Number Theory

Notes 4, 5, 6

 Number Theory Notes Ex. 10,

11, 13, 14. FAPP p. 379, 15-18.

Oct. 7 Applications of one-

way functions, policy

issues

Singh 7; Number

Theory Notes 7;

Diffie-Landau 6, 8;

Abelson et al. Ch. 2;

Gleick 14, 15

 Matlab Assgt. 1 Challenges.

Univ. Day Sun. Oct. 12.

Oct. 14 Quantum computing Singh 8, vB 19-23,

Gleick 13

 Fall Break Oct. 16-17.

Oct. 21 Probability and vB 9-14; Prob Notes Prob. Notes 3.1, 4.1, 4.2,5.1,

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

information 3-7. Gleick 12. 5.2, 6.1-6.3. Project progress

reports. Due Tues. Oct. 21.

Oct. 28 Stationary sources,

data compression

Pierce 3, 4; Info

Notes 1,2,7; Gleick

1,5; FAPP 358-370,

331-350.

FAPP p. 379, 20-24. Info Notes

1.1. Prob. Notes 7.1.

Nov. 4 Entropy and error

correction

Pierce 5; Info Notes

3,4; Gleick 6

 FAPP p. 353: 7, 11, 12; p. 378,

7-11.

Nov. 11 Shannon's theorems Info Notes 5; Gleick

7

 Info Notes 3.1, 3.2, 4.1, 5.1

Nov. 18 Exam and first

presentation?

 Exam Tues. Nov. 18

Nov. 25 Presentations start

Thurs. Nov. 20 or

Tues. Nov. 25

 Project papers due Tues. Nov.

25. TG Nov. 27 and 28.

Dec. 2 Presentations Classes end Wed. Dec. 3.

Revised project papers due

Thurs. Dec. 4 (Reading Day)

Dec. 9 Final exam time: Thurs. Dec. 11,

12 PM.

Honor System: Students in this course are bound by the UNC Honor System. You may

(and probably should) work together on class preparation, homework, projects, and exam

preparation, but papers should clearly indicate the contributions of each individual and

should properly credit any sources used. Exams will be closed-book individual efforts.

Students are asked to sign the Pledge at the end of each exam to attest that they followed

the Honor System while taking it.

Homework Problems: Due Fridays (with exceptions for holidays, etc.). Papers are to be

left in the wooden mailbox marked K. Petersen opposite Ph348 (not the metal mailbox in

Ph327) before 1:00. Late papers will be given some credit at the discretion of the grader--

just leave them in the box whenever they are ready. Please turn in papers that are neat and

written so as to be coherent and easily readable, not first drafts with scribbles and scratch-

outs. We want correct, clear, and efficient write-ups. Even for problems (or parts of

problems) that require just direct calculations, include explanations, in grammatical

English, of what you are doing, citing supporting formulas or theorems for the most

significant steps. To achieve an acceptably high level of presentation, you will usually

have to revise your paper after an initial draft, which already may be following several

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

attempts at solving a problem. See the notes “Writing up Mathematics” on the

instructor’s website for an example and more details.

Discussion Leading: We will establish a rotation of teams of two (maybe sometimes one

or three) students to animate our discussions of the reading and work that we do outside

of class. The leaders will be prepared to raise questions, which may be open-ended or

about details. They will also seek to go beyond the assigned reading to other sources and

will try to come up with examples, activities, or commentaries related to the ideas

involved. Each week's leaders should meet with the instructor in advance on Friday or

Monday to discuss ideas for questions and activities.

About the Instructor: Karl Petersen was born in Tallinn, Estonia, and grew up in East

Orange, New Jersey. His degrees are from Princeton and Yale, and he has held visiting

positions at universities in Austria, Chile, France, and India. Petersen's research area is

ergodic theory, a fairly new branch of mathematics which applies probability and

analysis to study the long-term average behavior of complicated systems, with

applications ranging from celestial dynamics through interactions of biological

populations to the efficient transmission and recording of information. Favorite activities

include tennis and hiking.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

Part 2

A few questions

1. It’s a dark and stormy night in the North Atlantic in 1942. As admiral at base, you have just read
decoded intercepted Enigma-encoded messages which detail the time and place of a wolfpack attack on
a huge and important convoy. Do you divert it?

2. How can you flip a coin (fairly) via a long-distance phone call?

3. Can there be a cryptosystem in which everyone can encode messages to you, and see each other’s
encoded messages to you, but only you can decode and read them? What special advantages would any
such system have?

4. Can every imaginable cryptosystem be broken? (One-time pad, quantum systems, RSA, etc.)

5. Should the government be able to monitor all e-mail (or phone conversations) in the interest of
national security? Should use (or export) of cryptosystems be limited? Should there be a key escrow
system?

6. Do you (should you?) have the right to decrypt (and copy) DVD’s that you buy?

7. Can we measure the amount of information contained in a message?

8. How can information be compressed, so that it can be transmitted or stored more quickly, efficiently,
or cheaply?

9. How can information be protected against errors in transmission?

10. How can useful information be extracted from huge piles of data (for example, from the reams of
intercepted e-mails that the government might pile up)?

9

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

Part 3

Writing

When writing up mathematics, make sure to embed the mathematics in English-language explanations.
Use the proofs and explanations in the Notes on Number Theory and Cryptography as a guide to style.

Example 1: Prove that the sum of any two odd numbers is even.

Preliminary work (not of hand-in quality):

m odd =⇒ m = 2j + 1 (2j + 1) + (2k + 1) = 2j + 2k + 2 = 2(j + k + 1), even!

Final write-up:

Proposition: The sum of any two odd numbers is even.

Proof: Let m and n be odd numbers. Then there are integers j and k such that m = 2j + 1 and
n = 2k + 1. Thus

m+ n = (2j + 1) + (2k + 1) = 2j + 2k + 2 = 2(j + k + 1),

which is even, since it is twice an integer.

[Remark: We assume that the definition of an odd number is one that is twice an integer plus 1.]

Example 2: Find the value of Euler’s phi function at 21.

Preliminary work (not of hand-in quality):

φ(21) =?

prime factorization: 21 = 3 ∗ 7

φ(21) = (3− 1) ∗ (7− 1)

= 2 ∗ 6

= 12

Final write-up:

What is the value of the Euler phi-function at 21?

Solution: Since 21 is the product of the two primes 3 and 7, and we know from Exercise 3 of the “Notes
on Number Theory and Cryptography” that for distinct primes p and q we have φ(pq) = (p− 1)(q− 1),
we find that

φ(21) = (3− 1) ∗ (7− 1) = 2 ∗ 6 = 12.

Comments:

1. Notice that the write-ups include brief statements of the problems.

11

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

12 Part 3. Writing

2. What is on the page can be read aloud and understood as correct English prose.

3. Relevant reasons are supplied to support the most important steps. (What is important is often
related to what the ”point” of the problem is–what has recently been learned that the problem is using
or illustrating.)

4. Special attention is paid to the key logical constructs ”if...then”, ”if and only if”, ”there exists”,
and ”for every”, as well as the important words ”and”, ”or”, and ”not”. (How many of these came up
in these examples?)

5. Why all this fuss?

(a) We are not just trying to get an answer, but to understand the process that produces the answer.

(b) We have to convince others (for example, the grader) that our reasoning is correct.

(c) It is nice to have a clear, complete, readable solution in hand to consult later, for example when
working on other problems or reviewing for exams.

(d) The discipline of writing something down clearly and completely forces clear and complete un-
derstanding. First of all, it is a test of understanding (if you can’t get it down clearly in writing, you
don’t really understand it). Second, the process of writing, criticizing, and revising is actually one of
the best tools for PRODUCING better understanding.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

Part 4

Counting

It is important to be able to count exactly the number of elements in any finite set. We will see
many applications of counting as we proceed (number of Enigma plugboard arrangements, computer
passwords of a certain form, telephone area codes, automobile license plates, binary strings of a certain
length needed to encode uniquely each possible English message of a certain length, etc.). In this section
we list some of the basic techniques that are helpful for counting even in complicated situations.

Notation. If A is any set, we denote by |A| the number of elements in A. (If A is infinite, we write
|A| =∞.) N = {1, 2, . . . } denotes the set of natural numbers.

Remark. Thus |A| = n ∈ N if and only if A can be put in one-to-one correspondence with {1, . . . , n},
i.e., “counted”. In the foundations of mathematics, following Georg Cantor, one defines the concept
of cardinal number as follows. Two sets A and B are said to have the same cardinal number if they
can be put in one-to-one correspondence, i.e., if there is a one-to-one onto function f : A → B. Then
even some infinite sets can be seen to have the same or different cardinal numbers. For example, the
set N = {1, 2, . . . } of natural numbers, the set Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . } of integers, and the set Q
of rational numbers all have the same cardinal number—they are all countable—while the set R has a
different (in fact larger) cardinal number than N and so is uncountable. A cardinal number is then an
equivalence class under this concept of sameness. For example, 2 is the set of all sets that can be put in
one-to-one correspondence with the set {∅, {∅}}.

4.1 Disjoint sets

If A and B are disjoint sets, i.e., A ∩B = ∅, then |A ∪B| = |A|+ |B|.

Example 4.1.1. If A = {2, 4, 8} and B = {1, 5, 11, 12}, then |A ∪B| = 3 + 4 = 7.

Example 4.1.2. Here’s a useful everyday example: If you have 8 shirts in the laundry and 2 in the
drawer, then you have at least 10 shirts.

4.2 Cartesian products

Recall that the Cartesian product A×B of two sets A and B is the set of all ordered pairs with the first
element from A and the second element from B:

(4.1) A×B = {(a, b) : a ∈ A, b ∈ B}.

By repeating this construction we can build up the Cartesian product of n sets for any n ≥ 2:

(4.2)
A1 ×A2 × · · · ×An =

{(a1, a2,an) : a1 ∈ A1, a2 ∈ A2, . . . an ∈ AN}.

13

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

14 Part 4. Counting

Proposition 4.2.1.

(4.3)
|A×B| = |A| |B|

|A1 ×A2 × · · · ×An| = |A1| |A2| . . . |An|.

Example 4.2.1. How many “words” (arbitrary strings) are there on the 26 letters of the English
alphabet consisting of a vowel followed by a consonant? Answer: 5 · 21 = 105.

Example 4.2.2. A (cheap) combination lock has three independently turning wheels, each of which
can be set in any one of 8 different positions. How many possible combinations are there? Answer:
8 · 8 · 8 = 512.

Example 4.2.3. How many license plate “numbers” can be made of three English letters followed by
three digits? Answer: 263 · 103 = 17, 576, 000.

It is easy to see why Formula (4.2) is correct. Imagine n wheels on a spindle, like a combination
lock, with ni possible settings for wheel number i, i = 1, . . . , n. For each of the n1 settings of the first
wheel, there are n2 settings of the second, thus n1n2 ways to set the first pair of wheels. For each of
these settings of the first two wheels, there are n3 ways to set the third wheel, hence n1n2n3 ways to set
the third, and so on.

Exercise 4.2.1. Let L denote the number of license plate “numbers” that can be made of three English
letters followed by four digits, and let N denote the number that can be made of four English letters
followed by three digits. Find L/N—without first computing L or N .

Exercise 4.2.2. How many binary strings (words on the alphabet {0, 1}) are there of length 7? How
many are there of length less than or equal to 7 (counting the empty word, which has length 0)?

Exercise 4.2.3. A student shows up unprepared for a multiple-choice exam that has 10 questions with
4 possible answers for each one. The student takes random guesses on all the questions but gets a perfect
score. How surprised should the student be?

Exercise 4.2.4. How many functions are there from a set with 4 elements to a set with 7 elements?

4.3 Permutations

A permutation of a set A = {a1, . . . , an} is an ordering of that set.

Remark 4.3.1. Note that by definition the elements of any set are distinct. Thus there is no such set as
{1, 1, 2}. Note also that the the set {1, 2, 3} is the same as the set {2, 3, 1}.

Example 4.3.1. If A = {a, b, c}, then abc and bac are two different permutations of A.

Example 4.3.2. Permutations of {1, . . . , n} correspond to one-to-one onto functions π : {1, . . . , n} →
{1, . . . , n}. To any such function π let correspond the ordering π(1) . . . π(n). And given a permutation
i1 . . . in of {1, . . . , n}, for each j = 1, . . . , n define π(j) = ij .

Proposition 4.3.1. The number of permutations of any set with n elements is n! = n(n − 1) · · · 2 · 1.
(1! = 1, 0! = 1.)

Proof. There are n choices for the first element in the ordering, and for each choice of the first element
there are n − 1 choices for the second, hence there are n(n − 1) ways to choose the first two elements.
Then for each of the choices of the first two elements, there are n− 2 ways to choose the third, and so
on.

Example 4.3.3. The three (different) scramblers of an Enigma machine can be placed into their three
slots in 3! = 3 · 2 · 1 = 6 ways. The 6 arrangements are:

123 132 213 231 312 321.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

4.4. Subsets (Combinations) 15

An n-set is any set with n elements.

Definition 4.3.1. An r-permutation of an n-set (n, r ∈ N, 0 ≤ r ≤ n) is an ordering of an r-element
subset of the n-set.

Example 4.3.4. Let A = {1, 2, 3} be a set with n = 3 elements, and let r = 2. Then the 2-permutations
of A are

12 21 13 31 23 31.

Proposition 4.3.2. The number of r-permutations of an n-set is

(4.4) P (n, r) = n(n− 1) · · · (n− r + 1).

Proof. The proof is the same as for Proposition 4.3.1.

Example 4.3.5. The senior class wants to choose a president, vice president, and secretary from among
its 4000 members. How many ways are there to do this (assuming no person can serve simultaneously
in two positions)? Answer: 4000 · 3999 · 3998 ways.

Exercise 4.3.1. A weekly bridge group decides it should get organized by having each member serve
either as scheduler, food provider, treasurer, or scorekeeper, and that in order to even out the workloads
they should have a new arrangement every month. How long can this four-member group keep this up
without repeating an arrangement?

Exercise 4.3.2. How many 4-letter words (arbitrary strings) are there on the 26 letters of the English
alphabet? How many are there which use 4 different letters?

Exercise 4.3.3. A baseball team has 17 players. How many ways are there to choose a starting lineup
of 9 players plus determine the order in which they will bat? How many ways are there to do this and
in addition assign to each player one of the 9 defensive positions (catcher, pitcher, first base, etc.)?

4.4 Subsets (Combinations)

By an r-subset of a set A we mean any set B ⊂ A such that |B| = r, i.e., B has r elements. Notice that
the elements of any r-subset are unordered, as they are for any set.

Proposition 4.4.1. Let n, r ∈ N with 0 ≤ r ≤ n. The number of r-subsets of a set with n elements is

(4.5) C(n, r) =

(
n

r

)
=

n!

r!(n− r)!
.

Proof. We sneak up on the result—counting the r-subsets of a set A with n elements—by counting
instead, in a different way than before, the number P (n, r) of r-permutations of A. We know already
that

P (n, r) = n(n− 1) · · · (n− r + 1).

But each r-permutation of A is formed by first selecting an r-subset of A (there are C(n, r) ways to make
this choice) and then ordering that particular r-element subset (there are r! ways to do this). Therefore

(4.6) P (n, r) = C(n, r) · r!,

and hence

(4.7) C(n, r) =
n!

r!(n− r)!
.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

16 Part 4. Counting

Example 4.4.1. The number of 2-subsets of a 4-set is 4!/(2!2!) = 6. If the 4-set is A = {1, 2, 3, 4}, then
these 2-subsets are

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

Note that each of them can be ordered in r! = 2 ways, leading to 6 · 2 = P (4, 2) = 4 · 3 2-permutations
of A.

C(n, r) =
(
n
r

)
is sometimes read “n choose r”, since it gives the number of ways to choose an

unordered set of r objects from a pool of n. These numbers are also known as binomial coefficients,
because of the following Proposition.

Proposition 4.4.2. For any n ∈ N and any a, b ∈ R,

(4.8) (a+ b)n =

n∑
r=0

C(n, r)arbn−r.

The binomial coefficients have many fascinating properties, the most basic of which is the Pascal
Identity:

Proposition 4.4.3. Let n, k ∈ N with k ≤ n. Then

(4.9) C(n+ 1, k) = C(n, k − 1) + C(n, k).

Proof. This equation can be checked easily by calculation, using the definition of C(n, k) as a quotient of
factorials. But the following combinatorial proof can give more insight into the idea behind the identity.

Let A be a set with n + 1 elements, fix a particular a ∈ A, and let B = A \ {a}, so that B consists
of all elements of A except a, and |B| = n.

We want to count the k-element subsets of A. These fall into two disjoint classes, the ones that
contain a and the ones that don’t contain a. The ones that contain a are obtained by choosing a (k−1)-
element subset of B—there are C(n, k − 1) ways to do this—and then adding a to it. The ones that
do not contain a are obtained by choosing a k-element subset of B—and there are C(n, k) ways to do
this.

This relation leads to the familiar and fascinating Pascal Triangle, in which each entry is the sum of
the two immediately above it and the n’th row lists the coefficients in the expansion of (a+ b)n:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

...

Exercise 4.4.1. From a basketball team consisting of 12 players, how many ways are there to select a
starting lineup consisting of five players? How many ways are there to select a starting lineup of five,
if each player is assigned a different position—center, power forward, small forward, shooting guard, or
point guard?

Exercise 4.4.2. How many binary strings of length seven have exactly three 0’s?

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

4.5. A Few More Counting Principles 17

Exercise 4.4.3. An intramural basketball team consists of four women and six men. The games are
four on four. How many ways are there to pick a starting lineup that includes at least one man and at
least one woman?

Exercise 4.4.4. An Enigma machine plugboard joins up 6 different pairs of the 26 letters. (For example
a is joined to x, k to r, m to t, o to v, q to y, and s to z.) How many different plugboard settings are
there?

Exercise 4.4.5. How many license plates that have three letters followed by three digits use no letter
or digit twice?

Exercise 4.4.6. From a Congressional committee consisting of 13 Republicans and 12 Democrats it
is necessary to choose a subcommittee of 4 Republicans and 3 Democrats. How many possibilities are
there?

Exercise 4.4.7. Construct a combinatorial argument to prove that if k, r, n ∈ N with k ≤ r ≤ n, then
C(n, r)C(r, k) = C(n, k)C(n− k, r − k).

4.5 A Few More Counting Principles

4.5.1 Inclusion-Exclusion

(4.10) |A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|.

This is because when we add |A1| and |A2|, the elements that are in both sets, i.e. in A1 ∩ A2, are
counted in twice.

(4.11)

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3|
−(|A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|)

+|A1 ∩A2 ∩A3|.

This is because in forming |A1| + |A2| + |A3| the elements that are in more than one of the sets Ai
are counted in either twice, if they are in exactly two of these sets, or three times if they are in all three
sets. Subtracting off |A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|) accomplishes the correction for elements that are
in exactly two of the sets, since it subtracts off the extra 1 for each of them. But this term subtracts off
3 for each element that is in all 3 sets, so the cardinality of A1 ∩A2 ∩A3 has to be added back in.

A similar formula applies to the cardinality of the union of n sets for any n ∈ N.

Example 4.5.1. Let’s determine how many words (arbitrary strings) of length 6 on the 26 English
letters either start with a or end with ed. The number starting with a is the number of arbitrary 5-letter
words which can be appended to the initial a, namely 265. The number that end with ed is 264. And
the number that start with a and end with ed is 263. So the answer is 265 + 264 − 263.

Exercise 4.5.1. How many functions are there from {1, 2, . . . , n} to {0, 1} which assign 0 to either 1 or
n?

4.5.2 Counting the complement

Sometimes it is easier to count the number of elements that are not in a set A and then subtract from
the total number to find out how many are in A.

Example 4.5.2. How many binary strings of length 10 contain at least one 1? Well, there are 210

binary strings of length 10 and only one (all 0’s) that does not contain any 1’s, so the answer is 210 − 1.

Exercise 4.5.2. How many strings of 3 decimal digits do not contain the same digit 3 times?

Exercise 4.5.3. How many strings of 8 decimal digits contain a repeated digit?

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

18 Part 4. Counting

4.5.3 The Pigeonhole Principle

This principle is so obvious that it hardly seems worth talking about:

Pigeonhole Principle. If n+ 1 objects are placed into n boxes (or “pigeonholes”–see the array next to
the elevator on the third floor of Phillips Hall), then at least one of the boxes has to contain at least two
of the objects.

Example 4.5.3. How many strings of 12 decimal digits contain a repeated digit? Answer: All 1012 of
them. Think of each of the 12 places in the string as an “object” which is placed into one of the “boxes”
0,1,2,3,4,5,6,7,8,9 according to the entry in the string at that place. Since 12 > 10, at least two of the
12 objects have to end up in the same box.

Exercise 4.5.4. Early one morning you are groping in the dark in a drawer full of unpaired blue and
black socks. How many do you have to pull out in order to be certain that you have two that match?

Exercise 4.5.5. Six people are stranded on an island. Each pair of the six consists either of two allies
or two enemies. Show that there must exist either a clique of three mutual allies or a set of three mutual
enemies.

Exercise 4.5.6. For each real number x, denote by bxc the greatest integer less than or equal to x, by
(x) = x− bxc the fractional part of x, and by d(x,Z) the distance from x to the nearest integer.

Let N ∈ N, and let α be any irrational number. Show that there is q ∈ N with q ≤ N such that
d(qα,Z) < 1/N .

Hint: Consider the “objects” 0, (α), (2α), . . . (Nα) and the “boxes” {x : i/N ≤ x < (i + 1)/N}, i =
0, 1, . . . , N − 1.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

Part 5

Some elementary probability

5.1 Probability spaces

Probability theory is an attempt to work mathematically with the relative uncertainties of random
events. In order to get started, we do not attempt to estimate the probability of occurrence of any event
but instead assume that somehow these have already been arrived at and so are given to us in advance.
These data are assembled in the form of a probability space (X,B, P), which consists of

1. a set X, sometimes called the sample space, which is thought of as the set of all possible states of
some system, or as the set of all possible outcomes of some experiment;

2. a family B of subsets of X, which is thought of as the family of observable events; and

3. a function P : B → [0, 1], which for each observable event E ∈ B gives the probability P (E) of
occurrence of that event.

While the set X of all possible outcomes is an arbitrary set, for several reasons, which we will not
discuss at this moment, the set B of observable events is not automatically assumed to consist of all
subsets of X. (But if X is a finite set, then usually we do take B to be the family of all subsets of X.)

We also assume that the family B of observable events and the probability measure P satisfy a
minimal list of properties which permit calculations of probabilities of combinations of events:

1. P (X) = 1

2. B contains X and is is closed under the set-theoretic operations of union, intersection, and com-
plementation: if E,F ∈ B, then E ∪ F ∈ B, E ∩ F ∈ B, and Ec = X \ E ∈ B. (Recall that E ∪ F
is the set of all elements of X that are either in E or in F , E ∩ F is the set of all elements of X
that are in both E and F , and Ec is the set of all elements of X that are not in E.)

In fact, in order to permit even more calculations (but not too many) we suppose that also the
union and intersection of countably many members of B are still in B.

3. If E,F ∈ B are disjoint, so that E ∩ F = ∅, then P (E ∪ F) = P (E) + P (F). In fact, we assume
that P is countably additive: if E1, E2, . . . are pairwise disjoint (so that Ei ∩Ej = ∅ if i 6= j), then

(5.1) P (∪∞i=1Ei) = P (E1 ∪ E2 ∪ . . .) = P (E1) + P (E2) + · · · =
∞∑
i=1

P (Ei).

Example 5.1.1. In some simple but still interesting and useful cases, X is a finite set such as {0, . . . , d−
1} and B consists of all subsets of X. Then P is determined by specifying the value pi = P (i) of each
individual point i of X. For example, the single flip of a fair coin is modeled by letting X = {0, 1}, with
0 representing the outcome heads and 1 the outcome tails, and defining P (0) = P (1) = 1/2. Note that

19

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

20 Part 5. Some elementary probability

the probabilities of all subsets of X are then determined (in the case of the single coin flip, P (X) = 1
and P (∅) = 0).

Exercise 5.1.1. Set up the natural probability space that describes the roll of a single fair die and find
the probability that the outcome of any roll is a number greater than 2.

Exercise 5.1.2. When a pair of fair dice is rolled, what is the probability that the sum of the two
numbers shown (on the upward faces) is even?

Exercise 5.1.3. In a certain lottery one gets to try to match (after paying an entry fee) a set of 6 different
numbers that have been previously chosen from {1, . . . , 30}. What is the probability of winning?

Exercise 5.1.4. What is the probability that a number selected at random from {1, . . . , 100} is divisible
by both 3 and 7?

Exercise 5.1.5. A fair coin is flipped 10 times. What is the probability that heads comes up twice in
a row?

Exercise 5.1.6. Ten fair coins are dropped on the floor. What is the probability that at least two of
them show heads?

Exercise 5.1.7. A fair coin is flipped ten times. What is the probability that heads comes up at least
twice?

Exercise 5.1.8. Show that if E and F are observable events in any probability space, then

(5.2) P (E ∪ F) = P (E) + P (F)− P (E ∩ F).

5.2 Conditional probability

Let (X,B, P) be a probability space and let Y ∈ B with P (Y) > 0. We can restrict our attention to Y ,
making it the set of possible states or outcomes for a probability space as follows:

1. The set of states is Y ⊂ X with P (Y) > 0;

2. The family of observable events is defined to be

(5.3) BY = {E ∩ Y : E ∈ B};

3. The probability measure PY is defined on BY by

(5.4) PY (A) =
P (A)

P (Y)
for all A ∈ BY .

Forming the probability space (Y,BY , PY) is called “conditioning on Y ”. It models the revision
of probability assignments when the event Y is known to have occurred: we think of PY (A) as the
probability that A occurred, given that we already know that Y occurred.

Example 5.2.1. When a fair die is rolled, the probability of an even number coming up is 1/2. What
is the probability that an even number came up if we are told that the number showing is greater than
3? Then out of the three possible outcomes in Y = {4, 5, 6}, two are even, so the answer is 2/3.

Definition 5.2.1. For any (observable) Y ⊂ X with P (Y) > 0 and any (observable) E ⊂ X we define
the conditional probability of E given Y to be

(5.5) P (E|Y) =
P (E ∩ Y)

P (Y)
= PY (E).

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

5.2. Conditional probability 21

Exercise 5.2.1. A fair coin is flipped three times. What is the probability of at least one head? Given
that the first flip was tails, what is the probability of at least one head?

Exercise 5.2.2. From a group of two men and three women a set of three representatives is to be
chosen. Each member is equally likely to be selected. Given that the set includes at least one member
of each sex, what is the probability that there are more men than women in it?

Definition 5.2.2. The observable events A and B in a probability space (X,B, P) are said to be
independent in case

(5.6) P (A ∩B) = P (A)P (B).

Notice that in case one of the events has positive probability, say P (B) > 0, then A and B are
independent if and only if

(5.7) P (A|B) = P (A);

that is, knowing that B has occurred does not change the probability that A has occurred.

Example 5.2.2. A fair coin is flipped twice. What is the probability that heads occurs on the second
flip, given that it occurs on the first flip?

We model the two flips of the coin by bit strings of length two, writing 0 for heads and 1 for tails on
each of the two flips. If Y is the set of outcomes which have heads on the first flip, and A is the set that
has heads on the second flip, then

X = {00, 01, 10, 11},
Y = {00, 01}, and

A = {10, 00},

so that A ∩ Y = {00} includes exactly one of the two elements of Y . Since each of the four outcomes in
X is equally likely,

P (A|Y) =
P (A ∩ Y)

P (Y)
=
|A ∩ Y |
|Y |

=
1

2
= P (A).

Thus we see that A and Y are independent.

This example indicates that the definition of independence in probability theory reflects our intuitive
notion of events whose occurrences do not influence one another. If repeated flips of a fair coin are
modeled by a probability space consisting of bit strings of length n, all being equally likely, then an
event whose occurrence is determined by a certain range of coordinates is independent of any other
event that is determined by a disjoint range of coordinates.

Example 5.2.3. A fair coin is flipped four times. Let A be the event that we obtain a head on the
second flip and B be the event that among the first, third, and fourth flips we obtain at least two heads.
Then A and B are independent.

Exercise 5.2.3. Show that the events A and B described in the preceding example will be independent
whether or not the coin being flipped is fair.

Exercise 5.2.4. Show that events A and B described in the preceding example will be independent
even if the probability of heads could be different on each flip.

Exercise 5.2.5. When a pair of fair dice is rolled, is the probability of the sum of the numbers shown
being even independent of it being greater than six?

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

22 Part 5. Some elementary probability

5.3 Bayes’ Theorem

Looking at the definition of conditional probability kind of backwards leads very easily to a simple
formula that is highly useful in practice and has profound implications for the foundations of probability
theory (frequentists, subjectivists, etc.). We use the notation from [?], in which C is an event, thought
of as a cause, such as the presence of a disease, and I is another event, thought of as the existence of
certain information. The formula can be interpreted as telling us how to revise our original estimate
P (C) that the cause C is present if we are given the information I.

Theorem 5.3.1 (Bayes’ Theorem). Let (X,B, P) be a probability space and let C, I ∈ B with P (I) > 0.
Then

(5.8) P (C|I) = P (C)
P (I|C)

P (I)
.

Proof. We just use the definitions of the conditional probabilities:

(5.9) P (C|I) =
P (C ∩ I)

P (I)
, P (I|C) =

P (I ∩ C)

P (C)

and the fact that C ∩ I = I ∩ C.

Example 5.3.1. We discuss the example in [?, p. 77] in this notation. C is the event that a patient has
cancer, and P (C) is taken to be .01, the incidence of cancer in the general population for this example
taken to be 1 in 100. I is the event that the patient tests positive on a certain test for this disease. The
test is said to be 99% accurate, which we take to mean that the probability of error is less than .01, in
the sense that P (I|Cc) < .01 and P (Ic|C) < .01.

Then P (I|C) ≈ 1, and

(5.10) P (I) = P (I|C)P (C) + P (I|Cc)P (Cc) ≈ .01 + (.01)(.99) ≈ .02.

Applying Bayes’ Theorem,

(5.11) P (C|I) = P (C)
P (I|C)

P (I)
≈ (.01)

1

.02
≈ .5.

The surprising conclusion is that even with such an apparently accurate test, if someone tests positive
for this cancer there is only a 50% chance that he actually has the disease.

Often Bayes’ Theorem is stated in a form in which there are several possible causes C1, C2, . . . which
might lead to a result I with P (I) > 0. If we assume that the observable events C1, C2, . . . form a
partition of the probability space X, so that they are pairwise disjoint and their union is all of X, then

(5.12) P (I) = P (I|C1)P (C1) + P (I|C2)P (C2) + ...,

and Equation (5.8) says that for each i,

(5.13) P (Ci|I) = P (Ci)
P (I|Ci)

P (I|C1)P (C1) + P (I|C2)P (C2) + ...
.

This formula applies for any finite number of observable events Ci as well as for a countably infinite
number of them.

Exercise 5.3.1. Suppose we want to use a set of medical tests to look for the presence of one of two
diseases. Denote by S the event that the test gives a positive result and by Di the event that a patient
has disease i = 1, 2. Suppose we know the incidences of the two diseases in the population:

(5.14) P (D1) = .07, P (D2) = .05, P (D1 ∩D2) = .01.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

5.4. Bernoulli trials 23

From studies of many patients over the years it has also been learned that

(5.15)
P (S|D1) = .9, P (S|D2) = .8,

P (S|(D1 ∪D2)c) = .05, P (S|D1 ∩D2) = .99.

(a) Form a partition of the underlying probability space X that will help to analyze this situation.

(b) Find the probability that a patient has disease 1 if the battery of tests turns up positive.

(c) Find the probability that a patient has disease 1 but not disease 2 if the battery of tests turns up
positive.

5.4 Bernoulli trials

In Section 5.2 we came across independent repeated trials of an experiment, such as flipping a coin or
rolling a die. Such a sequence is conveniently represented by a probability space whose elements are
strings on a finite alphabet. Equivalently, if a single run of the experiment is modeled by a probability
space (D,B, P), then n independent repetitions of the experiment are modeled by the Cartesian product
of D with itself n times, with the probability measure formed by a product of P with itself n times.

We now state this more precisely. Let (D,B, P) be a probability space with D = {0, . . . , d− 1}, B =
the family of all subsets of D, P (i) = pi > 0 for i = 0, . . . , d− 1.

Denote by D(n) the Cartesian product of D with itself n times. Thus D(n) consists of all ordered
n-tuples (x1, . . . , xn) with each xi ∈ D, i = 1, . . . , n. If we omit the commas and parentheses, we can
think of each element of D(n) as a string of length n on the alphabet D.

Example 5.4.1. If D = {0, 1} and n = 3, then

D(n) = {000, 001, 010, 011, 100, 101, 110, 111},

the set of all bit strings of length 3.

We now define the set of observables in D(n) to be B(n) = the family of all subsets of D(n). The
probability measure P (n) on D(n) is determined by

(5.16) P (n)(x1x2 . . . xn) = P (x1)P (x2) · · ·P (xn)

for each x1x2 . . . xn ∈ D(n) .

This definition of P (n) in terms of products of probabilities seen in the different coordinates (or
entries) of a string guarantees the independence of two events that are determined by disjoint ranges of
coordinates. Note that this holds true even if the strings of length n are not all equally likely.

Exercise 5.4.1. A coin whose probability of heads is p, with 0 < p < 1/2, is flipped three times. Write
out the probabilities of all the possible outcomes. If A is the event that the second flip produces heads,
and B is the event that either the first or third flip produces tails, find P (3)(A∩B) and P (3)(A)P (3)(B).

Let D = {0, 1} and P (0) = p ∈ (0, 1), P (1) = 1 − p. Construct as above the probability space
(D(n),B(n), P (n)) representing n independent repetitions of the experiment (D,B, P). The binomial
distribution gives the probability for each k = 0, 1, . . . , n of the set of strings of length n that contain
exactly k 0’s. recall that C(n, k) denotes the binomial coefficient n!/(k!(n−k)!), the number of k-element
subsets of a set with n elements.

Proposition 5.4.1. Let (D(n),B(n), P (n)) be as described above. Then for each k = 0, 1, . . . , n,

(5.17)
P (n){x1 . . . xn ∈ D(n) : xi = 0 for k choices of i = 1, . . . , n} =

C(n, k)pk(1− p)n−k.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

24 Part 5. Some elementary probability

Proof. For each subset S of {1, . . . , n}, let

E(S) = {x ∈ D(n) : xi = 0 if and only if i ∈ S}.

Note that if S1 and S2 are different subsets of {1, . . . , n}, then E(S1) and E(S2) are disjoint.

Fix k = 0, 1, . . . , n. There are C(n, k) subsets of {1, . . . , n} which have exactly k elements, and for
each such subset S we have

P (n)(E(S)) = pk(1− p)n−k.

Adding up the probabilities of these disjoint sets gives the result.

Exercise 5.4.2. For the situation in Exercise 5.4.1 and each k = 0, 1, 2, 3, list the elements of Ak = the
event that exactly k heads occur. Also calculate the probability of each Ak.

Representing repetitions of an experiment with finitely many possible outcomes by strings on a finite
alphabet draws an obvious connection with the modeling of information transfer or acquisition. A
single experiment can be viewed as reading a single symbol, which is thought of as the outcome of the
experiment. We can imagine strings (or experimental runs) of arbitrary lengths, and in fact even of
infinite length. For example, we can consider the space of one-sided infinite bit strings

(5.18) Ω+ = {x0x1x2 · · · : each xi = 0 or 1},

as well as the space of two-sided infinite bit strings

(5.19) Ω = {. . . x−1x0x1 · · · : each xi = 0 or 1}.

Given p with 0 < p < 1, we can again define a probability measure for many events in either of these
spaces: for example,

(5.20) P (∞)
p {x : x2 = 0, x6 = 1, x7 = 1} = p(1− p)(1− p).

A set such as the one above, determined by specifying the entries in a finite number of places in
a string, is called a cylinder set. Let us define the probability of each cylinder set in accord with the
idea that 0’s and 1’s are coming independently, with probabilities p and 1 − p, respectively. Thus, if
0 ≤ i1 < i2 < · · · < ir, each a1, . . . , ar = 0 or 1, and s of the aj ’s are 0, let

(5.21) P (∞)
p {x ∈ Ω+ : xi1 = a1, . . . , xir = ar} = ps(1− p)r−s.

It takes some effort (which we will not expend at this moment) to see that this definition does not lead

to any contradictions, and that there is a unique extension of P
(∞)
p so as to be defined on a family

B(∞) which contains all the cylinder sets and is closed under complementation, countable unions, and
countable intersections.

Definition 5.4.1. If D is an arbitrary finite set, we denote by Ω+(D) the set of one-sided infinite strings
x0x1x2 . . . with entries from the alphabet D, and we denote by Ω(D) the set of two-sided infinite strings
with entries from D. We abbreviate Ω+ = Ω+({0, 1}) and Ω = Ω({0, 1}).

With each of these sequence spaces we deal always with a fixed family B of observable events which
contains the cylinder sets and is closed under countable unions, countable intersections, and complemen-
tation.

The spaces Ω+(D) and Ω(D) are useful models of information sources, especially when combined
with a family of observables B which contains all cylinder sets and with a probability measure P defined
on B. (We are dropping the extra superscripts on B and P in order to simplify the notation.) Given
a string a = a0 . . . ar−1 on the symbols of the alphabet D and a time n ≥ 0, the probability that the

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

5.5. Markov chains 25

source emits the string at time n is given by the probability of the cylinder set {x : xn = a0, x1 =
a1, . . . , xn+r−1 = ar−1}.

Requiring that countable unions and intersections of observable events be observable allows us to
consider quite interesting and complicated events, including various combinations of infinite sequences
of events.

Example 5.4.2. In the space Ω+ constructed above, with the probability measure P
(∞)
p , let us see that

the set of (one-sided) infinite strings which contain infinitely many 0’s has probability 1. For this purpose

we assume (as can be proved rigorously) that the probability space (Ω+,B(∞) , P
(∞)
p) does indeed satisfy

the properties set out axiomatically at the beginning of these notes. Let

A = {x ∈ Ω+ : xi = 0 for infinitely many i}.

We aim to show that P (∞)(Ac) = 0 (Ac = Ω+ \A = the complement of A), and hence P (∞)(A) = 1.

For each n = 0, 1, 2, . . . let

Bn = {x ∈ Ω+ : xn = 0 but xi = 1 for all i > n},

and let B−1 consist of the single string 1111 Then the sets Bn are pairwise disjoint and their union
is Ac.

By countable additivity,

P (∞)
p (

∞⋃
n=−1

Bn) =

∞∑
n=−1

P (∞)
p (Bn),

so it is enough to show that

P (∞)
p (Bn) = 0 for all n.

Fix any n = −1, 0, 1, 2, For each r = 1, 2, . . . ,

Bn ⊂ Zn+1,n+r = {x ∈ Ω+ : xn+1 = xn+2 = · · · = xn+r = 1},

and

P (∞)
p (Zn+1,n+r) = (1− p)r.

Since 0 < 1− p < 1, we have (1− p)r → 0 as r →∞, so P
(∞)
p (Bn) = 0 for each n.

If A is an observable event in any probability space which has probability 1, then we say that A occurs
almost surely, or with probability 1. If some property holds for all points x ∈ D in a set of probability 1,
then we say that the property holds almost everywhere.

Exercise 5.4.3. In the probability space (Ω+,B(∞), P
(∞)
p) constructed above, find the probability of

the set of infinite strings of 0’s and 1’s which never have two 1’s in a row. (Hint: For each n = 0, 1, 2, . . .
consider Bn = {x ∈ Ω+ : x2nx2n+1 6= 11}.)

5.5 Markov chains

Symbols in strings or outcomes of repeated experiments are not always completely independent of one
another—frequently there are relations, interactions, or dependencies among the entries in various coor-
dinates. In English text, the probabilities of letters depend heavily on letters near them: h is much
more likely to follow t than to follow f . Some phenomena can show very long-range order, even infinite
memory. Markov chains model processes with only short-range memory, in which the probability of
what symbol comes next depends only on a fixed number of the immediately preceding symbols. In the

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

26 Part 5. Some elementary probability

simplest case, 1-step Markov chains, the probability of what comes next depends only on the immedia-
tely preceding symbol. The outcome of any repetition of the experiment depends only on the outcome
of the immediately preceding one and not on any before that.

The precise definition of a Markov chain on a finite state space, or alphabet, D = {0, 1, . . . , d− 1} is
as follows. The sample space is the set Σ+ of all one-sided (could be also two-sided) infinite sequences
x = x0x1 . . . with entries from the alphabet D. The family of observable events again contains all the
cylinder sets. The probability measure M is determined by two pieces of data:

1. a probability vector p = (p0, . . . , pd−1), with each pi ≥ 0 and p0 + · · ·+ pd−1 = 1, giving the initial
distribution for the chain;

2. a matrix P = (Pij) giving the transition probabilities between each pair of states i, j ∈ D. It is
assumed that each Pij ≥ 0 and that for each i we have Pi1 + Pi2 + · · · + Pi,d−1 = 1. Such a P is
called a stochastic matrix.

Now the probability of each basic cylinder set determined by fixing the first n entries at values
a0, . . . , an−1 ∈ D is defined to be

(5.22)
M{x ∈ Σ+ : x0 = a0, . . . , xn−1 = an−1} =

pa0Pa0a1Pa1a2 . . . Pan−2,n−1
.

The idea here is simple. The initial symbol of a string, at coordinate 0, is selected with probability
determined by the initial distribution p: symbol i has probability pi of appearing, for each i = 0, 1, . . . , d−
1. Then given that symbol, a0, the probability of transitioning to any other symbol is determined by
the entries in the matrix P , specifically the entries in row a0: the probability that a1 comes next, given
that we just saw a0 is Pa0a1 . And so on. The condition that the matrix P have row sums 1 tells us that
we are sure to be able to add some symbol each time.

The 1-step memory property can be expressed as follows. For any choice of symbols a0, . . . , an,

M{x ∈ Σ+ : xn = an|x0 = a0, . . . , xn−1 = an−1} =

M{x ∈ Σ+ : xn = an|xn−1 = an−1}.

Finite-state Markov chains are conveniently visualized in terms of random paths on directed graphs.

1

1/2
xx

1/4dd

1/4

��

0

1

88

2
1/2

ff

1/2dd

Here the states are 0, 1, 2 and the transition probabilities between states are the labels on the arrows.
Thus the stochastic transition matrix is

P =

 0 1 0
1/2 1/4 1/4
1/2 0 1/2

 .

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

5.5. Markov chains 27

If we specified an initial distribution p = (1/6, 1/2, 1/3) listing the initial probabilities of the states
0, 1, 2, respectively, then the probabilities of strings starting at the initial coordinate would be calculated
as in this example:

M{x ∈ Σ+ : x0 = 1, x2 = 1, x3 = 0} = p1P11P10 =
1

2
· 1

4
· 1

2
=

1

16
.

Exercise 5.5.1. For the example above, with p and P as given, find the probabilities of all the positive-
probability strings of length 3.

Recall that the vector p = (p0, . . . , pd−1) gives the initial distribution: the probability that at time 0
the system is in state j ∈ {0, . . . , d− 1} is pj . So what is the probability that the system is in state j at
time 1?

Well, the event that the system is in state j at time 1, namely {x ∈ Σ+ : x1 = j}, is the union of d
disjoint sets defined by the different possible values of x0:

(5.23) {x ∈ Σ+ : x1 = j} =

d−1⋃
i=0

{x ∈ Σ+ : x0 = i, x1 = j}.

Since the i’th one of these sets has probability piPij , we have

(5.24) M{x ∈ Σ+ : x1 = j} =

d−1∑
i=0

piPij .

So we have determined the distribution p(1) of the chain at time 1. The equations

(5.25) p
(1)
j =

d−1∑
i=0

piPij for j = 0, . . . , d− 1

are abbreviated, using multiplication of vectors by matrices, by

(5.26) p(1) = pP.

Similarly, the distribution at time 2 is given by

(5.27) p(2) = p(1)P = pP 2,

where P 2 is the square of the matrix P according to matrix multiplication. And so on: the probability
that at any time n = 0, 1, 2, . . . the chain is in state j = 0, . . . , d− 1 is (pPn)j , namely, the j’th entry of
the vector obtained by multiplying the initial distribution vector p on the right n times by the stochastic
transition matrix P .

Here’s a quick definition of matrix multiplication. Suppose that A is a matrix with m rows and n
columns (m,n ≥ 1; if either equals 1, A is a (row or column) vector). Suppose that B is a matrix with n
rows and p columns. Then AB is defined as a matrix with m rows and p columns. The entry in the i’th
row and j’th column of the product AB is formed by using the i’th row of A and the j’th column of B:
take the sum of the products of the entries in the i’th row of A (there are n of them) with the entries in
the j’th column of B (there are also n of these)—this is the “dot product” or “scalar product” of the
i’th row of A with the j’th column of B:

(5.28) (AB)ij =

n∑
k=1

AikBkj , for i = 1, . . . ,m; j = 1, . . . , p.

Note that here we have numbered entries starting with 1 rather than with 0. (This is how Matlab usually
does it).

Markov chains have many applications in physics, biology, psychology (learning theory), and even
sociology. Here is a nonrealistic indication of possible applications.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

28 Part 5. Some elementary probability

Exercise 5.5.2. Suppose that a certain study divides women into three groups according to their
level of education: completed college, completed high school but not college, or did not complete high
school. Suppose that data are accumulated showing that the daughter of a college-educated mother has
a probability .7 of also completing college, probability .2 of only making it through high school, and
probability .1 of not finishing high school; the daughter of a mother who only finished high school has
probabilities .5, .3, and .2, respectively, of finishing college, high school only, or neither; and the daughter
of a mother who did not finish high school has corresponding probabilities .3, .4, and .3.

(a) We start with a population in which 30% of women finished college, 50% finished high school but
not college, and 20% did not finish high school. What is the probability that a granddaughter of one of
these women who never finished high school will make it through college?

(b) Suppose that the initial distribution among the different groups is (.5857, .2571, .1571). What
will be the distribution in the next generation? The one after that? The one after that?

Remark 5.5.1. Under some not too stringent hypotheses, the powers P k of the stochastic transition
matrix P of a Markov chain will converge to a matrix Q all of whose rows are equal to the same vector
q, which then satisfies qQ = q and is called the stable distribution for the Markov chain. You can try
this out easily on Matlab by starting with various stochastic matrices P and squaring repeatedly.

5.6 Space mean and time mean

Definition 5.6.1. A random variable on a probability space (X,B, P) is a function f : X → R such
that for each interval (a, b) of real numbers, the event {x ∈ X : f(x) ∈ (a, b)} is an observable event.
More briefly,

(5.29) f−1(a, b) ∈ B for all a, b ∈ R.

This definition seeks to capture the idea of making measurements on a random system, without
getting tangled in talk about numbers fluctuating in unpredictable ways.

Example 5.6.1. In an experiment of rolling two dice, a natural sample space is X = {(i, j) : i, j =
1, . . . , 6}. We take B = the family of all subsets of X and assume that all 36 outcomes are equally likely.
One important random variable on this probability space is the sum of the numbers rolled:

s(i, j) = i+ j for all (i, j) ∈ X.

Example 5.6.2. If X is the set of bit strings of length 7, B = all subsets of X, and all strings are
equally likely, we could consider the random variable

s(x) = x0 + · · ·+ x6 = number of 1’s in x.

In the following definitions let (X,B, P) be a probability space.

Definition 5.6.2. A partition of X is a family {A1, . . . , An} of observable subsets of X (each Ai ∈ B)
which are pairwise disjoint and whose union is X. The sets Ai are called the cells of the partition.

Definition 5.6.3. A simple random variable on X is a random variable f : X → R for which there
is a partition {A1, . . . , An} of X such that f is constant on each cell Ai of the partition: there are
c1, . . . , cn ∈ R such that f(x) = ci for all x ∈ Ai, i = 1, . . . , n.

Definition 5.6.4. Let f be a simple random variable as in Definition 5.6.3. We define the space mean,
or expected value, or expectation of f to be

(5.30) E(f) =

n∑
i=1

ciP (Ai).

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

5.6. Space mean and time mean 29

Example 5.6.3. Let the probability space and random variable f be as in Example 5.6.1—the sum of the
numbers showing. To compute the expected value of f = s, we partition the set of outcomes according
to the value of the sum: let Aj = s−1(j), j = 2, . . . , 12. Then we figure out the probability of each cell
of the partition. Since all outcomes are assumed to be equally likely, the probability that s(x) = i is
the number of outcomes x that produce sum i, times the probability (1/36) of each outcome. Now the
numbers of ways to roll 2, 3, . . . , 12, respectively, are seen by inspection to be 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1.
Multiply each value (2 through 12) of the random variable s by the probability that it takes that value
(1/36, 2/36, . . . , 1/36) and add these up to get E(s) = 7.

Thus 7 is the expected sum on a roll of a pair of dice. This is the mean or average sum. The expected
value is not always the same as the most probable value (if there is one)—called the mode—as the next
example shows.

Exercise 5.6.1. Find the expected value of the random variable in Example 5.6.2.

Exercise 5.6.2. Suppose that the bit strings of length 7 in Example 5.6.2 are no longer equally likely
but instead are given by the probability measure P (7) on {0, 1}(7) determined by P (0) = 1/3, P (1) = 2/3.
Now what is the expected value of the number of 1’s in a string chosen at random?

The expectation of a random variable f is its average value over the probability space X, taking
into account that f may take values in some intervals with greater probability than in others. If the
probability space modeled a game in which an entrant received a payoff of f(x) dollars in case the
random outcome were x ∈ X, the expectation E(f) would be considered a fair price to pay in order to
play the game. (Gambling establishments charge a bit more than this, so that they will probably make
a profit.)

We consider now a situation in which we make not just a single measurement f on a probabi-
lity space (X,B, P) but a sequence of measurements f1, f2, f3, A sequence of random variables is
called a stochastic process. If the system is in state x ∈ X, then we obtain a sequence of numbers
f1(x), f2(x), f3(x), . . . , and we think of fi(x) as the result of the observation that we make on the system
at time i = 1, 2, 3,

It is natural to form the averages of these measurements:

(5.31) An{fi}(x) =
1

n

n∑
k=1

fk(x)

is the average of the first n measurements. If we have an infinite sequence f1, f2, f3, . . . of measurements,
we can try to see whether these averages settle down around a limiting value

(5.32) A∞{fi}(x) = lim
n→∞

1

n

n∑
k=1

fk(x).

Such a limiting value may or may not exist—quite possibly the sequence of measurements will be wild
and the averages will not converge to any limit.

We may look at the sequence of measurements and time averages in a different way: rather than
imagining that we make a sequence of measurements on the system, we may imagine that we make the
same measurement f on the system each time, but the system changes with time. This is the viewpoint
of dynamical systems theory; in a sense the two viewpoints are equivalent.

Example 5.6.4. Consider the system of Bernoulli trials (Ω+,B(∞), P
(∞)
p) described above: the space

consists of one-sided infinite sequences of 0’s and 1’s, the bits arriving independently with P (0) = p and
P (1) = 1− p. We can “read” a sequence in two ways.

(1) For each i = 0, 1, 2, . . . , let fi(x) = xi. We make a different measurement at each instant, always
reading off the bit that is one place more to the right than the previously viewed one.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

30 Part 5. Some elementary probability

(2) Define the shift transformation σ : Ω+ → Ω+ by σ(x0x1x2 . . .) = x1x2 This transformation
lops off the first entry in each infinite bit string and shifts the remaining ones one place to the left. For
each i = 1, 2, . . . , σi denotes the composition of σ with itself i times; thus σ2 lops off the first two places
while shifting the sequence two places to the left. On the set Ω of two-sided infinite sequences we can
shift in both directions, so we can consider σi for i ∈ Z.

Now let f(x) = x0 for each x ∈ Ω+. Then the previous fi(x) = f(σix) for all i = 0, 1, 2, In
this realization, we just sit in one place, always observing the first entry in the bit string x as the string
streams by toward the left.

This seems to be maybe a more relaxed way to make measurements. Besides that, the dynamical vie-
wpoint has many other advantages. For example, many properties of the stochastic processes {f(σix)},
can be deduced from study of the action of σ on (Ω+,B(∞), P

(∞)
p) alone, independently of the particular

choice of f .

Exercise 5.6.3. In the example (Ω+,B(∞), P
(∞)
p) just discussed, with f(x) = x0 as above, do you think

that the time average

A∞f(x) = lim
n→∞

1

n

n∑
k=1

f(σkx)

will exist? (For all x? For most x?) If it were to exist usually, what should it be?

Exercise 5.6.4. Same as the preceding exercise, but with f replaced by

f(x) =

{
1 if x0x1 = 01

0 otherwise.

5.7 Stationary and ergodic information sources

We have already defined an information source. It consists of the set of one- or two-sided infinite
strings Ω+(D) or Ω(D) with entries from a finite alphabet D; a family B of subsets of the set of strings
which contains all the cylinder sets and is closed under complementation and countable unions and
intersections; and a probability measure P defined for all sets in B. (For simplicity we continue to delete
superscripts on B and P .) We also have the shift transformation, defined on each of Ω+(D) and Ω(D)
by (σx)i = xi+1 for all indices i. If f(x) = x0, then observing f(σkx) for k = 0, 1, 2, . . . “reads” the
sequence x = x0x1x2 . . . as σ makes time go by.

Definition 5.7.1. An information source as above is called stationary if the probability measure P is
shift-invariant: given any word a = a0a2 . . . ar−1 and any two indices n and m in the allowable range of
indices (Z for Ω(D), {0, 1, 2, . . . } for Ω+(D)),

(5.33)
P{x : xn = a0, xn+1 = a1, . . . , xn+r−1 = ar−1} =

P{x : xm = a0, xm+1 = a1, . . . , xm+r−1 = ar−1}.

The idea is that a stationary source emits its symbols, and in fact consecutive strings of symbols,
according to a probability measure that does not change with time. The probability of seeing a string
such as 001 is the same at time 3 as it is at time 3003. Such a source can be thought of as being in an
equilibrium state—whatever mechanisms are driving it (which are probably random in some way) are
not having their basic principles changing with time.

Example 5.7.1. The Bernoulli sources discussed above are stationary. This is clear from the definition
of the probability of the cylinder set determined by any word as the product of the probabilities of the
individual symbols in the word.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

5.7. Stationary and ergodic information sources 31

Example 5.7.2. Consider a Markov source as above determined by an initial distribution p and a
stochastic transition matrix P . If p is in fact a stable distribution for P (see Remark 5.5.1),

pP = p,

then the Markov process, considered as an information source, is stationary.

Definition 5.7.2. A stationary information source as above is called ergodic if for every simple random
variable f on the set of sequences, the time mean of f almost surely equals the space mean of f . More
precisely, the set of sequences x for which

(5.34) A∞f(x) = lim
n→∞

1

n

n∑
k=1

f(σkx) = E(f)

(in the sense that the limit exists and equals E(f)) has probability 1.

In fact, it can be shown that in order to check whether or not a source is ergodic, it is enough to
check the definition for random variables f which are the characteristic functions of cylinder sets. Given
a word a = a0a1a2 . . . ar−1, define

(5.35) fa(x) =

{
1 if x0x1 . . . xr−1 = a

0 otherwise.

Ergodicity is then seen to be equivalent to requiring that in almost every sequence, every word appears
with limiting frequency equal to the probability of any cylinder set defined by that word. Here “almost
every” sequence means a set of sequences which has probability one.

Example 5.7.3. The Bernoulli systems defined above are all ergodic. This is a strong version of Jakob
Bernoulli’s Law of Large Numbers (1713).

What kinds of sources are not ergodic, you ask? It’s easiest to give examples if one knows that
ergodicity is equivalent to a kind of indecomposability of the probability space of sequences.

Example 5.7.4. Let us consider an information source which puts out one-sided sequences on the
alphabet D = {0, 1}. Let us suppose that the probability measure P governing the outputs is such that
with probability 1/2 we get a constant string of 0’s, otherwise we get a string of 0’s and 1’s coming
independently with equal probabilities. If we consider the simple random variable f0, which gives a
value of 1 if x0 = 0 and otherwise gives a value 0, we see that on a set of probability 1/2 the time mean
of f0 is 1, while on another set of probability 1/2 it is 1/2 (assuming the result stated in Example 5.7.3).
Thus, no matter the value of E(f0), we cannot possibly have A∞f0 = E(f0) almost surely.

Exercise 5.7.1. Calculate the space mean of the random variable f0 in the preceding example.

Exercise 5.7.2. Calculate the space mean and time mean of the random variable f1 in the preceding
example (see Formula (5.35)).

References

Hans Christian von Baeyer, Information: The New Language of Science, Phoenix, London, 2004.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

Part 6

Number theory and cryptography

6.1 Modular arithmetic

Many interesting and useful properties of the set of integers Z (the whole numbers . . . ,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .)
can be studied by thinking in terms of divisibility by a particular base or modulus, a positive integer m.
For example, it is frequently important to know whether a given number k is even or odd, that is to say,
whether or not k is (evenly) divisible by 2. (An even number of young swimmers can be paired off in a
buddy system, but if there are an odd number, a problem arises.) The entire set Z of integers breaks
into two disjoint subsets, the evens and the odds. Note that two numbers x and y are in the same class
if and only if their difference is even, that is, 2 divides x− y. Further, the sum of any two even numbers
is even, the sum of any two odd numbers is even, and the sum of an even number and an odd number is
odd. This allows us to do arithmetic with the two classes of even and odd numbers. Similar statements
hold for divisibility by any positive integer modulus m, and we now give those statements formally.

Definition 6.1.1. Let m be a positive integer. We say that two integers x and y are congruent modulo
m, and write x ≡ y mod m, alternatively x ≡m y, in case m divides x−y, which is written as m|(x−y).

Thus x ≡ y mod m if and only if there is k ∈ Z such that x− y = km.

The relation x ≡m y divides the set of integers Z into m disjoint congruence classes:
[0]m = all those x ∈ Z which are congruent to 0 mod m, i.e., all those x which are divisible by m;
[1]m = all those x ∈ Z which are congruent to 1 mod m, i.e., all those x which leave a remainder of 1
when divided by m;
.
.
.
[m−1]m = all those x ∈ Z which are congruent to m−1 mod m, i.e., all those x which leave a remainder
of m− 1 when divided by m.

This set of congruence classes is denoted by Zm. It has exactly m elements. We will see in a moment
that it is possible to do some arithmetic with these elements.

Think of the integers as being written on a long ribbon, which is then wrapped around a circle of
circumference m. The numbers that fall on top of (or underneath) 0 constitute the congruence class [0]m,
and similarly for the congruence classes of 1, 2, . . . ,m − 1. Each of the m congruence classes contains
infinitely many elements. Any two elements in the same congruence class differ by a multiple of m; and
elements of different congruence classes always differ by an amount that is not a multiple of m. The
congruence classes are also called residue classes, since they concern the remainders, or residues, left
after division by m.

To work with Zm, we can deal either with entire congruence classes or else just pick convenient
representatives from each congruence class. A set of integers that contains exactly one member of each
congruence class in Zm is called a complete set of representatives modulo m. A particularly natural

33

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

34 Part 6. Number theory and cryptography

way to do this is to pick the smallest nonnegative member of each class; this gives the complete set
of representatives {0, 1, . . . ,m − 1}. If x is any integer, its representative in this set is denoted by x
mod m:

x mod m = that j ∈ {0, 1, . . . ,m− 1} such that x ≡m j.

This is not always the most convenient set of representatives. For example, when m = 3 the complete
set of representatives {−1, 0, 1} is handy because multiplying is really easy.

This brings us up to the topic of arithmetic modulo m.

Proposition 6.1.1. If a ≡m c and b ≡m d, then a+ b ≡m c+ d, a− b ≡m c− d, and ab ≡m cd.

Exercise 6.1.1. Prove this Proposition by using the definition of congruence modulo m.

This Proposition allows us to do addition, subtraction, and multiplication with the elements of Zm.
For example, to compute

j + k mod m,

choose any a ∈ [j]m (that is, any integer a that is congruent to j modulo m) and any b ∈ [k]m, and
compute a + b. The answer is the congruence class modulo m of this result, namely [a + b]m. If we
had made different choices of a and b (say we had chosen c ≡m j and d ≡m k), we might have gotten a
different result for j + k, but the congruence class [j + k]m of the result would have been the same.

These arithmetic operations in Zm obey the familiar laws of arithmetic. Addition and multiplication
are associative (x(yz) = (xy)z) and commutative (xy = yx). There is an identity element, [0]m for addi-
tion modulo m. Every element of Zm has an additive inverse: [a]m + [−a]m = [0]m. And multiplication
distributes over addition: x(y + z) = xy + yz. Any set with operations satisfying these conditions is
called a ring.

Zm also has an identity element, [1]m, for multiplication. What about division? Can we find multi-
plicative inverses of nonzero elements?

There is a bit of a problem here. Let’s consider the case m = 6. If a = [5]6, then we can indeed find
a multiplicative inverse for a: a · [5]6 = [5]6[5]6 = [5 ·5]6 = [25]6 = [1]6, so that a is its own multiplicative
inverse! But looking at b = [2]6, when we multiply in turn by all the possible candidates, namely the
classes of 0,1,2,3,4,5, we get [0]6, [2]6, [4]6, [0]6, [2]6, [4]6, and none of these equals [1]6!

We can tell that there is trouble because [2]6[3]6 = [0]6, so that neither [2]6 nor [3]6 can have a
multiplicative inverse modulo 6. If a, b ∈ Zm satisfy ab = [0]m, and if, say, a has a multiplicative inverse
x modulo m, then [0]m = x[0]m = x(ab) = (xa)b = 1 · b = b. Thus if two nonzero elements of Zm have
product equal to [0]m, then neither of them can have a multiplicative inverse in Zm.

6.2 Common divisors and the Euclidean Algorithm

The previous discussion showed that it can be important to know whether or not two positive integers
have a common divisor. The greatest common divisor of two positive integers m and n is defined already
by its name; it is denoted by gcd(m,n) or occasionally and more briefly, when no confusion is likely
because of the context, simply by (m,n). We say that m and n are relatively prime in case gcd(m,n) = 1.
Two integers have no common prime divisors if and only if they are relatively prime. Isn’t it clear that
if n1 and m are relatively prime, and n1 ≡m n2, then n2 and m are relatively prime? Thus we can talk
about congruence classes relatively prime to m. We will see below that the set of congruence classes
relatively prime to a fixed modulus m forms an interesting and important set; already the number of
elements that it contains deserves attention and study.

Definition 6.2.1. For each positive integer m > 1, the number of integers n ∈ {0, 1, . . . ,m − 1} such
that gcd(n,m) = 1 is denoted by φ(m). We also define φ(1) = 1. The function φ is called the Euler φ-
(or totient) function.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

6.2. Common divisors and the Euclidean Algorithm 35

Exercise 6.2.1. Show that if p is prime, then φ(p) = p− 1.

Exercise 6.2.2. Show that if p and q are distinct primes, then φ(pq) = (p− 1)(q − 1).

Recall that every positive integer m has a unique factorization

(6.1) m = pe11 · · · perr ,

where r ≥ 1, p1, . . . , pr are prime numbers with pi < pj whenever 1 ≤ i < j ≤ r, and e1, . . . , er are
positive integers. In fact, to prove this statement one usually uses the Euclidean Algorithm, which we
are about to discuss (so our presentation is not in strict logical order).

The greatest common divisor of m and n can be read off from looking at their prime factorizations:
for each prime that appears in both factorizations, take the lowest of the two powers to which it appears,
then multiply together all these prime powers to arrive at d = gcd(m,n). But usually we do not know
the prime factorizations of numbers that we come across, and it is a hard problem to determine the
prime factorizations of numbers. Indeed, it can be very hard to tell whether a number is prime. (The
apparent difficulty of primality testing and prime factorization is at the base of modern asymmetric,
public-key cryptographic systems.) Therefore it is important to have a straightforward method for
calculating greatest common divisors, and this is what the Euclidean Algorithm provides. We will see
that the information accumulated while running the algorithm is also useful for calculating multiplicative
inverses in Zm.

The Euclidean Algorithm for finding d = gcd(m,n) just consists of repeated division, keeping track
of the remainders. The last nonzero remainder is the sought-for d. Let us suppose that m < n. We put
r0 = n and r1 = m. Now divide r0 by r1, getting a remainder r2 with 0 ≤ r2 < r1:

(6.2) r0 = k1r1 + r2.

Now divide r1 by r2, getting a remainder r3 with 0 ≤ r3 < r2, and continue this process until arriving
at a remainder of 0:

(6.3)

r0 = k1r1 + r2

r1 = k2r2 + r3

...

ri−1 = kiri + ri+1

ri = ki+1ri+1 + 0.

Because the remainders are all nonnegative and they are decreasing, each smaller than the next, even-
tually one has to equal 0. The one just before this, the last nonzero remainder, is ri+1 = d = gcd(m,n).

Example 6.2.1. Let us perform this algorithm to find the greatest common divisor of m = 24 and
n = 128:

(6.4)

128 = 5 · 24 + 8

24 = 3 · 8 + 0

gcd(24, 128) = 8.

Check by looking at the prime factorizations: 24 = 23 · 3, 128 = 27.

How do we see that the Euclidean Algorithm does, as claimed, produce the greatest common divisor
of r0 and r1? The key is to notice that any integer k that divides both r0 and r1 also divides r2: this is
because k|a and k|b implies k|(a− b). Then by the same reasoning any such k must also divide r3, and
so on, down to d = ri+1. So any common divisor of r0 and r1 also divides ri+1. Similarly, the equations

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

36 Part 6. Number theory and cryptography

show that ri+1 divides ri, hence also ri−1, etc., until we see that ri+1 divides both r0 and r1. This shows
that indeed ri+1 = gcd(m,n).

The following fact may seem strange at first, but it turns out to be very useful for computing
multiplicative inverses modulo m. It says that if m and n are positive integers, and we lay off all of their
integer multiples on the number line, then it is possible to find two of them at distance gcd(m,n) from
one another.

Proposition 6.2.1. If m and n are positive integers and d = gcd(m,n), then there are integers x and
y such that

(6.5) d = xm− yn.

Remark 6.2.1. Replacing y by −y, this is the same as being able to find integers x and y such that

(6.6) d = xm+ yn.

Proof. This is accomplished by reading backwards the sequence of steps in the Euclidean Algorithm for
finding gcd(m,n) = ri+1. We have

(6.7) d = ri+1 = ri−1 − kiri.

Plugging in

(6.8) ri = ri−2 − ki−1ri−1,

we find

(6.9)
ri+1 = ri−1 − ki(ri−2 − ki−1ri−1)

= ri−1(1 + kiki−1 − k1ri−2).

Continuing in this way, we arrive eventually at

(6.10) ri+1 = xr0 + yr1,

as required.

Example 6.2.2. Looking at the preceding example with m = 24 and n = 128,

(6.11) 8 = −5 · 24 + 128.

Of course this was a bit easy, involving only one step.

Exercise 6.2.3. (a) Use the Euclidean Algorithm to find gcd(792, 2145).
(b) Find the prime factorizations of 792 and 2145 and use this information to check your answer to part
(a).
(c) Use the reverse of the Euclidean Algorithm to find integers x and y such that gcd(792, 2145) =
792x+ 2145y.

6.3 Finding modular multiplicative inverses

Continue to denote by m a fixed positive integer. First let us note that if n is a positive integer which
is not relatively prime to m, so that d = gcd(m,n) > 1, then it is not possible to find a multiplicative
inverse for n modulo m. For if we can find some integer x with

(6.12) xn ≡m 1,

this means that there is an integer k such that

(6.13) xn− 1 = km,

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

6.3. Finding modular multiplicative inverses 37

so that

(6.14) xn− km = 1.

Now d divides both terms on the left side of this equation, so d divides 1, hence d = 1.

On the other hand, if n is relatively prime to m, then n does have a multiplicative inverse modulo
m. Use the Euclidean Algorithmn reversed to find x and y such that

(6.15) xm+ yn = 1.

Then

(6.16) yn− 1 = −xm,

so that yn ≡m 1. Thus [y]m is the multiplicative inverse of [n]m in Zm.

Here is another way to find modular multiplicative inverses—the power method. Let us assume that
gcd(n,m) = 1, so that we know in advance that n has a multiplicative inverse modulo m, and all we
have to do is identify which congruence class of Zm it is. Let us look at the powers of n modulo m,
namely

(6.17) [n]m, [n
2]m, . . . , [n

j]m,

Since there are only m congruence classes in Zm and this list is infinite, there have to be repeats. In
fact, I claim that before there is a repeat there is a first power i ≥ 1 such that ni ≡m 1. For consider
the first repeat in this list, say [nj+i]m = [nj]m with i, j ≥ 1. Since n has a multiplicative inverse [y]m
modulo m, we can multiply by it j times and obtain ni ≡m 1. If i = 2, then n2 ≡m 1, and n is its
own multiplicative inverse modulo m. This can happen! For example, 5 is its own multiplicative inverse
modulo 4. If i > 1, then [ni−1]m is the multiplicative inverse of n modulo m. If i = 1, then n ≡m 1 and
n is its own multiplicative inverse modulo m.

Exercise 6.3.1. Use both the reverse Euclidean Algorithm and the power method to find the modular
inverse of 9 modulo 38.

You can use a spreadsheet (or a calculator or other software, such as Matlab or Mathematica) to
perform the Euclidean Algorithm and to calculate even very long lists of powers modulo m.

Exercise 6.3.2. Set up a spreadsheet for the Euclidean Algorithm as follows. (a) in the first row, in
cells C1 and D1, place the labels r0 and r1. In cell E1, place the label int(r0/r1). This will be the
integer part of r0/r1, that is, the number of times that r0 “goes evenly”’ into r1.In cell F1, place the
label Rem= c− de. Here we will put r0− r1int(r0/r1), which is the remainder after dividing r0 by r1.

(b) This was just setting up the labels. Now in C3 put 38, in D3 put 9, in E3 put =int(C3/D3), and
in F3 put =C3-D3*E3:

C D E F

r0 r1 int(r0/r1) Rem=c-de
38 9 4 2

(c) Now we want to get this to repeat. In C4 put =D3, and in D4 put =F3. This is the important
recursive step in which we replace r0, r1 by r1, r2. Put the mouse pointer on the small black square in
the lower right corner of cell C4 and drag it down several rows. Do the same with each of D4–F4. The
last nonzero (and non-error) entry in column F should be gcd(r0, r1).

(d) Change the choice of r0 and r1 and see whether you still get the right gcd.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

38 Part 6. Number theory and cryptography

Exercise 6.3.3. Set up a spreadsheet for powers modulo m as follows. In cells C1–F1 put the labels
n,m, nj , Mod(nj ,m), respectively. In C3 put 9, in D3 put 38, in E3 put =C3, In C4 put =C3, in D4
put =D3, in E4 put =C3*E3, and in F3 put =Mod(E3,D3). Think about what this means! Then drag
the black square in the lower right of C4 downwards a ways, similarly for D4, E4, and F3. The entry in
column F above 1 should be the inverse of n modulo m. (You can keep track of the power involved if
you like by putting label j in G1, entering 1 in G3, = 1+G3 in G4, and then dragging down the black
square in G4.)

You may experiment around with the spreadsheet in the preceding example (and the one before).
Notice that if the numbers involved get too big, the capacity of the software is exceeded and the computer
refuses to give a numerical answer. Mathematica and Matlab do much better at handling large numbers
than does the average spreadsheet, but eventually the capacity of the computer or our patience will be
exceeded. However, there is a very nice aspect of arithmetic modulo m: we never have to deal with
numbers larger than m− 1: just keep reducing modulo m at every stage. The size of numbers involved
can be reduced even more by using a complete set of representatives modulo m that includes negative
numbers.

Exercise 6.3.4. Modify the spreadsheet in the preceding exercise so that all calculations are done
modulo m. Then use it to find the multiplicative inverse of 33 modulo 23.

Later on we will explore a bit more the algebraic nature of Zm. While thinking about the set of
powers of n modulo m, in the case that gcd(n,m) = 1, we may note the following properties of this set:

Closure: The product of two elements of the set is also in the set;

Identity: The (multiplicative) identity element [1]m is in the set;

Inverses: each element of the set has a multiplicative inverse in the set.

Together with the fact that multiplication in Zm is associative (a(bc) = (ab)c for all a, b, c ∈ Zm),
these properties say that if gcd(n,m) = 1, then the set of powers of n modulo m form a group with
the operation of multiplication modulo m. Since multiplication is also commutative (ab = ba for all
a, b ∈ Zm), we say that they form a commutative or abelian group.

Exercise 6.3.5. Use the modular powers spreadsheet developed previously to study the set of powers
of n modulo m in several cases where n and m are not relatively prime. What structure, if any, do these
sets have? What structure, if any, does Zm have in terms of these sets?

6.4 The RSA public-key cryptosystem

This brilliant and important cryptographic system was invented in 1977 by Ronald Rivest, Adi Shamir,
and Leonard Adelman and discovered independently in 1973, but not announced, by Clifford Cocks and
James Ellis of the British Government Communications Headquarters, the successor of Bletchley Park
[?, p. 279 ff.]. The system has a strange but extremely useful asymmetry property: there are two keys
involved: each recipient of messages has both a public key and private key. The recipient announces
his public key to everyone but keeps the private key secret. Anyone can use the public key to encode
messages for a particular recipient, but, curiously, only someone with knowledge of the private key can
decode them. How is this possible? Why does the system work? How is it used in practice? What other
applications and implications are there of the existence of such asymmetric systems?

Asymmetric cryptographic systems are based on one-way functions—functions whose outputs can
be computed in a reasonable amount of time but whose inverses are inordinately difficult and time-
consuming to compute (given the output, or result of applying the function, it is essentially impossible
to determine what the input was). It is believed that prime multiplication and modular exponentiation—
f(x) = bx mod m—have this property: factorization into primes and modular logarithms are difficult.
A trapdoor function is a one-way function whose inverse can be feasibly computed if one is given an extra

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

6.4. The RSA public-key cryptosystem 39

piece of information. Cryptographic systems based on trapdoor functions are now used in real-world
communication by governments, businesses, and individuals, notably for secure transactions over the
internet.

Even the application of the RSA system takes a lot of computing power and time, because in order
for the one-way property to take real effect, very large numbers must be used as keys. Thus this system
is typically used to agree on a key for a standard, symmetric, single-key system, such as the Advanced
Encryption Standard, which replaced the Data Encryption Standard.

Here is the algorithm for RSA encoding and decoding. We will follow up with examples, plus an
explanation of why the system works.

1. The recipient’s public key consists of the product n of two distinct large primes p and q and an
encoding exponent e which is relatively prime to m = φ(n) = (p− 1)(q − 1).

2. The recipient’s private key consists of the two primes p and q and of the decoding exponent d,
which is the multiplicative inverse of e modulo m = φ(n): de ≡m 1. Someone who knows n and e but
not m will have a great deal of trouble finding d. To know m, one should know the factors p and q of n.
The factorization of n is the extra piece of information that provides the secret “trapdoor” entrance to
the inverse of the presumed one-way function that accomplishes the encoding.

3. Each message to be sent is an integer M ∈ {0, 1, . . . , n−1}. In practice, any text to be sent is first
converted to a string of numbers, for example by assigning the numerical ASCII codes that correspond
to ordinary keyboard characters. These are then written in binary (base 2) notation, so that the text
becomes a string of 0’s and 1’s. Then a preliminary encoding may be applied, followed by encoding for
error correction, for example by adding check digits. Then the text can be cut into blocks of length no
more than log2 n, so that each 0, 1-block represents a unique integer between 0 and n− 1.

4. The message is converted to R = Me mod n. This is the message transmitted to the recipient.
Note that all senders use the same encoding method for a particular recipient. They can see each other’s
encoded messages, but no one can decode them except the intended recipient.

5. The recipient receives R and applies to it his secret decoding exponent d, computing, as we will
later see,

(6.18) Rd ≡n (Me)d = Med ≡n M.

A modification of the RSA algorithm allows one to replace m = φ(n) = (p−1)(q−1) in the preceding
steps by m = lcm(p− 1, q − 1) (the least common multiple of p− 1 and q − 1). We will verify this later.

It is believed that, knowing the public key n and e, it would take too much computing power and
time to find the decoding exponent d, without knowledge of m = φ(n) = (p − 1)(q − 1), for which
knowledge of the factorization n = pq would be necessary. It is on this belief that the one-way property
of the coding algorithm is based.

Example 6.4.1. Let’s see how this works with two small primes, p = 5 and q = 11. We have n = pq = 55
and m = φ(n) = (p − 1)(q − 1) = 4 · 10 = 40. We need an encoding exponent e relatively prime to
40 = 23 · 5; let’s say we choose e = 7. Now for our message M ∈ {0, 1, · · · , n− 1}, say M = 13.

To encode, we compute R = Me mod n = (13)7 mod 55. This can be done by spreadsheet, by
calculator, or even pencil and paper—remembering that we need only deal with numbers in {0, 1, · · · , 54}
and that the power 7 can be approached rapidly by repeated squaring:

(6.19)

(13)2 = 169 ≡55 4

(13)4 ≡55 42 = 16

(13)6 ≡55 4 · 16 = 64 ≡55 9

(13)7 ≡55 9 · 13 = 117 ≡55 7.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

40 Part 6. Number theory and cryptography

So the encoded message is R = 7.

The recipient needs the decoding exponent d, which is the multiplicative inverse modulo m = 40 of
e = 7. This can be found by the power method, the Euclidean algorithm reversed, or guessing. Taking
powers of 7 modulo 40, perhaps with the help of the spreadsheet in Exercise 6.3.4, we find successively

(6.20) 71 = 7, 72 = 49 ≡40 9, 73 ≡40 63 ≡40 23, 74 ≡40 7 · 23 ≡40 161 ≡40 1,

so that d ≡40 73 ≡40 23.

The recipient decodes by calculating Rd = 723. Again the spreadsheet in Exercise 6.3.4 will do this
very quickly and easily. With paper and pencil we might calculate this way:

(6.21)

72 = 49 ≡55 −6

74 ≡55 36

78 ≡55 (36)2 = 1296 ≡55 −24

716 ≡55 (−24)2 = 576 ≡55 26

723 ≡55 716+4+2+1 ≡55 (26)(36)(−6)(7) ≡55 1 · (−42) ≡55 13 = M.

Example 6.4.2. What if the message M happens not to be relatively prime to the modulus n? Let’s
try it in the same system as above, but with, for example, M = 15 instead of 13.

We find R = (15)7 mod 55 = 5, and Rd = 523 ≡55 15 (by any of the methods suggested above), so
the method seems to work in this case too. We will investigate all of this below.

Exercise 6.4.1. Set up a spreadsheet to perform RSA encoding and decoding as follows. The first
column shows what to type in column C, the second what to type in column E, starting with row 2:

*p 5
*q 11

n=pq =E2*E3
phi(n)=(p-1)(q-1) =(E2-1)*(E3-1)

*e rel prime to phi(n) 7
*d with de=1 mod phi(n) 23

*message M in Z n 13
Mˆe mod n = R =mod(E9ˆE6,E4)

Rˆd mod n =mod(E10ˆE7,E4)

The entries marked by * indicate where the user will have to supply input in those rows in column E;
the spreadsheet is supposed to calculate the rest. The computer may fizzle when numbers get too large,
like perhaps 723. The decoding exponent d can be found by means of the spreadsheet in Exercise 6.3.4.

Exercise 6.4.2. Let’s extend the spreadsheet of the preceding exercise so that it performs the modified
RSA algorithm, using m = lcm(p− 1, q − 1) in place of m = φ(n) = (p− 1)(q − 1). Starting in row 14,
enter

*gcd(p-1,q-1) 2
m=lcm(p-1,q-1) =E5/E14

*f rel prime to m 7
*g with gf=1 mod m 3

message M 13
Mˆf mod n = R =mod(E19ˆE16,E4)

Rˆg mod n =mod(E20ˆE17,E4)

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

6.5. The mathematics behind the RSA cryptographic system 41

Note that g is easier to find than d was (because m is now smaller), and the computer also has an
easier time accomplishing the coding.

Exercise 6.4.3. Explain why lcm(a, b) = (ab)/ gcd(a, b). (This fact is used in the preceding spreads-
heet.)

Exercise 6.4.4. Try to modify the preceding spreadsheet so that the computer will not be stymied by
excessively large numbers. One idea could be to do the arithmetic modulo n when computing powers.
For this purpose, see the spreadsheet in Exercise 6.3.4, and consider using the spreadsheet functions
index or lookup, applied to vectors or arrays.

6.5 The mathematics behind the RSA cryptographic system

The key to the functioning of the RSA algorithm is the important but eay-to-understand Euler-Fermat
Theorem. We proceed to develop the small amount of number theory needed to prove this theorem.

Fix a positive integer m. We want to see that the set of congruence classes relatively prime to
m forms a commutative group Gm with respect to multiplication. Recall that if gcd(n1,m) = 1, and
n2 ≡m n1, then also gcd(n2,m) = 1. Thus we are justified in using the terminology “congruence classes
relatively prime to m”. We need to check that products of elements of Gm are again in Gm, that Gm
contains an identity element for multiplication, that every element of Gm has a multiplicative inverse
which is in Gm, and that multiplication is commutative (taking the product of two elements in either
order gives the same result).

First, recall that we know that the identity element [1]m is in Gm and that each element of x ∈ Gm
has a multiplicative inverse y ∈ Zm. We must have y ∈ Gm, because we know that y has a multiplicative
inverse (x), and we have seen above that an element of Zm has a multiplicative inverse if and only if it
is relative prime to m, i.e., if and only if it is in Gm.

We have not yet verified that Gm is closed under multiplication: x, y ∈ Gm implies xy ∈ Gm. This
can be seen with the help of the following very basic and important fact about prime numbers and
divisibility.

Proposition 6.5.1. If p is prime and m,n are positive integers such that p|(mn), then either p|m or
p|n.

Proof. This well-known fact seems to be clearly true, and it is an immediate consequence of the prime
factorization property of integers—but the most logical among us would wonder how the prime facto-
rization property is proved. Maybe with the help of this Proposition? The Proposition can be proved
directly with the help of the very handy application of the Euclidean Algorithm, Proposition 6.2.1.

So suppose that p|(mn) and p does not divide m. Since p has no divisors besides itself and 1, we have
gcd(p,m) = 1. Now using Proposition 6.2.1, find x and y such that xp+ ym = 1. Multiplying through
by n gives n = nxp+ ymn. Now p divides both terms on the right side of the equation, so p|n.

Corollary 6.5.1. If m|(n1n2) and gcd(n1,m) = 1, then m|n2.

Proof. We just pick up the last part of the preceding proof. Since gcd(n1,m) = 1, we can find x, y ∈ Z
with xn1 + ym = 1. Then n2 = xn1n2 + ymn2 is seen to be divisible by m.

Corollary 6.5.2. If gcd(n1,m) = gcd(n2,m) = 1, then gcd(n1n2,m) = 1. The converse is also true
(gcd(n1n2,m) = 1 implies gcd(n1,m) = gcd(n2,m) = 1.

Proof. We can argue that if gcd(n1n2,m) 6= 1, then n1n2 and m have in common an integer divisor
d > 1 and hence have in common a prime divisor. This requires the extra observation that every
positive integer greater than 1 is either prime or else has a prime divisor. How to prove this? We could

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

42 Part 6. Number theory and cryptography

consider the smallest integer d > 1 which is not prime and has no prime divisor. But then d must have
some divisor d0 with 1 < d0 < d, and d0 can’t have any prime divisor, because if it did, so would d.

Okay, if we don’t like that argument, we can fall back on Propostition 6.2.1. Find x1 and y1 with
1 = x1n1 + y1m and x2 and y2 with 1 = x2n2 + y2m. Multiply out and regroup, to see that any d that
divides both m and n1n2 also divides 1 and hence must equal 1.

For the converse, note that if, for example, n1 and m have a common divisor d > 1, then n1n2 and
m share the same common divisor.

Recall that the number of elements in Gm is given by Euler’s φ-function, φ(m). Recall also that we
already know (from preceding exercises) that if p is prime, then φ(p) = p − 1, and if q is a different
prime, then φ(pq) = (p− 1)(q− 1). Because of its importance for the RSA algorithm, and indeed in the
theory of numbers in general, we want to note the following two facts, which will allow us to calculate
φ(m) for all positive integers m.

Proposition 6.5.2. If p is prime and r is a positive integer, then φ(pr) = pr − pr−1.

Proof. Among the complete set of representatives {1, 2, . . . , pr} modulo pr, the only numbers which are
not relatively prime to p are the ones that are divisible by p (because p is prime). We can list these as

(6.22) p, 2p, 3p, . . . , pr−1p,

which shows that there are exactly pr−1 of them.

Theorem 6.5.1. The Euler φ-function is multiplicative in the following sense: if m and n are positive
integers such that gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).

Proof. We give two proofs, or, perhaps, one proof with a visualization. Consider all congruence classes
[xm+ yn]mn for x ∈ Gn and y ∈ Gm. There are φ(m)φ(n) choices of the pair (x, y). We want to show
that they all give different congruence classes in Zmn, and that every congruence class relatively prime
to mn comes up in this way.

First we check that all such xm+ yn are in fact relatively prime to mn. If p is a prime that divides
mn, then p must also divide m or n. Let’s suppose that p|m. If also p|(xm + yn), then (taking the
difference) p|(yn). Now p cannot divide n, since m and n are relatively prime, and p is known already
to divide m. Therefore p|y. But this is also impossible since y and m are relatively prime. A similar
argument applies, of course, in case it is n and not m that p divides.

For the second point, suppose that x1m + y1n ≡mn x2m + y2n, with 1 = gcd(x1, n) = gcd(x2, n) =
gcd(y1,m) = gcd(y2,m). Then

(6.23)

x1m+ y1n ≡ x2m+ y2n mod mn implies that

(x1 − x2)m+ (y1 − y2)n ≡ 0 mod mn, and hence

(x1 − x2)m = −(y1 − y2)n+ kmn for some k ∈ Z.

Thus n|(x1 − x2)m, and, since gcd(m,n) = 1, by Corollary 6.5.1 we have n|(x1 − x2). By symmetry of
the notation and situation, m|(y1 − y2).

These observations imply that φ(mn) ≥ φ(m)φ(n). To prove the reverse inequality, we show now
that every residue class mod mn that is relatively prime to mn arises as the class of some xm + yn
with x relatively prime to n and y relatively prime to m. For suppose that k ∈ Z and gcd(k,mn) = 1.
Since gcd(m,n) = 1, by the Euclidean Algorithm (read backwards) there are integers r and s such that
1 = rm+ sn, and hence there are integers x and y such that

k = xm+ yn.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

6.5. The mathematics behind the RSA cryptographic system 43

Now y must be relatively prime to m, since otherwise this equation shows that k and m have a common
prime factor, contradicting the fact that k and mn are relatively prime. Similarly, x is relatively prime
to n. This concludes the first proof.

We are using here Corollary 6.5.2, according to which a number is relatively prime to a product mn
if and only if it is relatively prime to each of the factors, m and n. This is also the basis of the following
more visual proof of the fact that gcd(m,n) = 1 implies φ(mn) = φ(m)φ(n).

Let us lay out the standard complete set of representatives modulo mn in n rows and m columns as
follows:

0 1 2 . . . m− 1
m m+ 1 m+ 2 . . . 2m− 1

2m 2m+ 1 2m+ 2 . . . 3m− 1
...

(n− 1)m (n− 1)m+ 1 (n− 1)m+ 2 . . . nm− 1

Because of the foregoing observation, we are interested in the number of entries i in this array that
are relatively prime to both m and n.

In each column, all the entries are congruent to one another modulo m. The columns correspond to
the the elements of Zm, the congruence classes modulo m. There are φ(m) columns whose entries are
all relatively prime to m. We now restrict our attention to those φ(m) columns.

In any one of these columns relatively prime to m, how many entries are there that are relatively
prime to n? Let us note that each column contains n entries, no two of which are congruent modulo
n: If 0 ≤ j, k ≤ n − 1 and jm + r ≡n km + r for some r, then n|(j − k)m, and, since gcd(n,m) = 1,
n|(j − k), so that j = k. Thus each column consists of a complete set of representatives modulo n and
hence contains φ(n) elements relatively prime to n.

We conclude that in the array there are exactly φ(n)φ(m) elements relatively prime to both m and
n, and hence to mn.

Exercise 6.5.1. (a) Find φ(68).
(b) Find φ(7911).

We now advance our understanding of the φ(m)-element abelian group Gm of congruence classes
relatively prime to m in preparation for proving the Euler-Fermat Theorem, which is the secret of
success of the RSA algorithm.

Proposition 6.5.3. If {r1, r2, . . . , rφ(m)} is a complete set of representatives relatively prime to m
modulo m, so that

Gm = {[r1]m, [r2]m, . . . , [rφ(m)]m},

and gcd(a,m) = 1, then {ar1, ar2, . . . , arφ(m)} is also a complete set of representatives relatively prime
to m modulo m.

Proof. We know that all the ari are relatively prime to m, because we have shown that Gm is closed
under multiplication. Moreover, because Gm, being a group, has multiplicative inverses, all of these
congruence classes are distinct:

(6.24) ari ≡m arj implies ri ≡m rj

(upon multiplying by the multiplicative inverse a−1 of a in Gm). Since we have here φ(m) distinct
congruence classes modulo m relatively prime to m, we must be looking at all of Gm, each element
represented exactly once.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

44 Part 6. Number theory and cryptography

Euler-Fermat Theorem. If m is a positive integer and a is an integer with gcd(a,m) = 1, then

(6.25) aφ(m) ≡ 1 mod m.

Proof. Let {r1, r2, . . . , rφ(m)} be a complete set of representatives for the group Gm of congruence classes
modulo m relatively prime to m. Because of the preceding Proposition,

(6.26) (ar1)(ar2) · · · (arφ(m)) ≡m r1r2 · · · rφ(m),

since both products contain exactly the same factors, and their order does not affect the value of the
product, the group Gm being commutative. If we denote the righthand side by R (an element of the
group Gm), this equation says

(6.27) aφ(m)R ≡m R,

and muliplying by R−1 ∈ Gm gives

(6.28) aφ(m) ≡m 1.

Fermat’s Little Theorem. If p is prime and a is an integer not divisible by p, then

(6.29) ap−1 ≡ 1 mod p.

Corollary 6.5.3. If p is prime and a ∈ Z, then

(6.30) ap ≡ a mod p.

Proof. If p|a, then both sides are 0 modulo p.

Remark 6.5.1. If G is any finite commutative (ab = ba for all a, b ∈ G) group, let I denote the identity
element of G and |G| the number of elements in G. Then

(6.31) a|G| = I for all a ∈ G.

The proof is the same as for Proposition 6.5.3 and the Euler-Fermat Theorem.

6.6 Verification of the functioning of the RSA algorithm

1. The recipient’s public key consists of the product n of two distinct primes p and q (which are kept
secret) and an encoding exponent e which is relatively prime to m = φ(n) = (p− 1)(q − 1). A message
(or piece of a message) is a congruence class M ∈ Zn. We deal first with the case when M is relatively
prime to n. (This covers (p− 1)(q− 1) of the pq congruence classes modulo n.) The encoded message is

(6.32) R = Me mod n.

The recipient knows p and q, and hence also m, and so can find the secret decoding exponent d, which is
the multiplicative inverse of e modulo m. There is k ∈ Z such that de = km+1, and so, if gcd(M,n) = 1,

(6.33) Rd ≡n Med = Mkm+1 = M(Mm)k = M(Mφ(n))k ≡n M(1k) ≡n M,

by the Euler-Fermat Theorem. The decoding is accomplished correctly!

2. What if gcd(M,n) 6= 1? For this, as well as the improved RSA algorithm, we need an ancient and
useful number theory result.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

6.6. Verification of the functioning of the RSA algorithm 45

Chinese Remainder Theorem. Suppose that m1,m2, . . . ,mr are pairwise relatively prime integers,
all at least 2.
(1) Given d1, . . . , dr ∈ Z, the system of congruences

(6.34) x ≡ di mod mi, i = 1, . . . , r

has an integer solution x with 0 ≤ x < m = m1m2 · · ·mr.
(2) The solution is unique modulo m = m1m2 · · ·mr: if x ≡ y mod mi for each i = 1, . . . , r. Then
x ≡ y mod m = m1m2 · · ·mr.

Proof. The proof of part (1) is Exercise 6.6.1. Statement (2) is credible in view of prime factorization,
but we can indicate also a proof based on tools we have been using before. We have

(6.35) x− y = k1m1 for some k1 ∈ Z.

Since m2|(x− y) and gcd(m2,m1) = 1, necessarily m2|k1, and so we may write

(6.36) x− y = k2m2m1 for some k2 ∈ Z.

Now m3 divides x− y but is relatively prime to m2m1 (recall Corollary 6.5.2, which was key to proving
that φ is multiplicative), so m3|k2, and so

(6.37) x− y = k3m3m2m1 for some k2 ∈ Z.

Continuing in this way (or, in an explicitly more rigorous proof, applying the Axiom of Mathematical
Induction), we arrive at the asserted conclusion.

Exercise 6.6.1. Prove part (1) of the Chinese Remainder Theorem. (Hint: For each i = 1, . . . , r let
ui = m/mi and let vi be the multiplicative inverse of ui modulo mi (explain why this exists). Then try
x = d1u1v1 + · · ·+ drurvr.)

Now let’s see that RSA decoding works even if gcd(M,n) 6= 1. First, if gcd(M,p) = 1, then Mp−1 ≡p
1, by Fermat’s Little Theorem, so that

(6.38)
Mm ≡p (Mp−1)q−1 ≡p 1q−1 = 1, and hence

Med = Mkm+1 = (Mm)kM ≡p 1kM ≡p M.

But this latter congruence holds even if gcd(M,p) 6= 1, since then both sides are 0 modulo p. Similarly,

(6.39) Med ≡q M.

Since p and q are distinct primes, the Chinese Remainder Theorem applies, and we conclude that

(6.40) Med ≡n M.

Exercise 6.6.2. In Example 6.4.2, the message M = 15 ≡ 0 mod p, since p = 5. Yet the decoding
gives us back 15, not 0. Sort through the steps of this calculation in light of the Chinese Remainder
Theorem to explain exactly how the decoding works.

3. Finally, we will check that decoding works in the modified RSA algorithm, in which m = φ(n) =
(p− 1)(q − 1) is replaced by m = lcm(p− 1, q − 1). The decoding exponent d is still the multiplicative
inverse of the encoding exponent e modulo this new (and probably greatly reduced) m, so we still have
ed = km+ 1 for some k ∈ Z. Because m is a multiple of p− 1, there is j1 ∈ Z such that m = j1(p− 1).
If gcd(M,p) = 1, then

(6.41) Med = Mkm+1 = M(Mp−1)j1k ≡p M(1j1k) ≡p M,

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

46 Part 6. Number theory and cryptography

by Fermat’s Little Theorem. As before, the congruence

(6.42) Med ≡p M

holds true whether or not gcd(M,p) = 1. Similarly,

(6.43) Med ≡q M,

and then

(6.44) Med ≡n M

follows from the Chinese Remainder Theorem.

6.7 A few applications

6.7.1 Digital signature

In electronic communication there is inherent anonymity: we cannot see or directly hear the people with
whom we are exchanging information. When sensitive information is involved, or commands are sent, or
money is moved around, it is important to know that the person on the other end of the communication
line has the necessary authority. This is the problem of authentication. For 2002 tax returns submitted
electronically, the IRS used an electronic signature consisting of birthdate and a self-selected 5-digit
identification number. An asymmetric cryptographic system, such as the RSA system, allows for a
clever and much surer form of authentication.

The sender who wishes to adduce proof of his identity prepares a message S consisting of his name,
plus the date and time of transmission. (This will prevent illicit reuse of the signature by anyone who
might intercept it.) He then encodes this message using his personal secret decoding exponent, d:

R = Sd mod n.

(The RSA encoding setup involving p, q, n = pq, d, and e is as before.) This signature R can be sent as
an addendum to any other message, M . The combined message and signature can be encoded using a
recipient’s public key and then sent to that recipient.

When the recipient applies his private decoding key to what he has received, he obtains MR—a
legible message M followed by a random-looking stream of bits, R. Now the receiver applies the sender’s
public encoding key, the exponent e, to R, obtaining

Re ≡n Sde ≡n Skφ(m)+1 ≡n S,

the original, legible, signature S.

The recipient is sure that only someone with knowledge of the sender’s secret decoding exponent d
could have encoded S to R so as to produce this result and is therefore convinced that the sender is
indeed who he says he is.

6.7.2 Diffie-Hellman key exchange

The problem of key exchange has long been one of the basic issues in cryptology. How can two parties
wishing to communicate agree securely and conveniently on a key that will be used to encode (and
decode) messages between them? In practice, keys must be changed often in order to foil cryptanalysis.
Weakness in key selection played a major role in the Polish and British attacks on the German Enigma
cipher in World War II.

For our purposes, let us say that the problem is for two people A and B to agree on an element k of
Zm. A clever way to use one-way functions to accomplish this task, even while communicating over an

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

6.7. A few applications 47

insecure channel, was discovered by Whitfield Diffie and Martin Hellman, predating the discovery of the
RSA system. It is based on the presumed one-way function, for a fixed base r ∈ Zm,

(6.45) f(x) = rx mod m.

The two partners A and B each pick elements of Zm, say A picks a and B picks b. Then

A sends f(a) = α to B, and

B sends f(b) = β to A.

The partners do not care if these communications are intercepted. Upon receipt,

A calculates k = βa mod m = rba mod m, and

B calculates k = αb mod m = rab mod m.

Because ab = ba, A and B arrive at the same key, k. Any interceptor of the communications would
have trouble determining a or b and hence, it is presumed, k, from α = f(a) and β = f(b).

6.7.3 Digital coin flipping

How can two people on opposite coasts accomplish a fair coin flip over the telephone? A classic example
involves a divorcing couple trying to decide who gets the car. The spouse in California flips a coin, the
spouse in New York calls “Tails!”, and the spouse in California says, “Sorry, you lose!”. The New York
spouse might not be convinced that the process was fair.

Maybe each of the two people, A and B, could choose either 0 or 1, with the understanding that A
wins if their choices agree, while B wins if the choices disagree. The choices could be transmitted to a
third party, who would then announce the result. But the involvement of a third party would lead to
complication and delay and would also raise the problem of trustworthiness of that arbiter, who could
perhaps be bribed or otherwise influenced.

Maybe A and B could simultaneously send their choices to each other. But achieving true simultaneity
and preventing cheating present their own problems.

A long-distance fair coin flip can be accomplished by using a one-way function f (say from Z to
Z or from Zm to Zm for some m) which has the property that given f(x) it is not only essentially
impossible to determine x but also even the parity of x, that is, x mod 2. Particular such functions
can be constructed using number theory—see [?, p. 52]. Here is one procedure to accomplish a fair
long-distance coin flip:

A chooses a ∈ {0, 1, . . . ,m− 1}, B chooses b ∈ {0, 1, . . . ,m− 1}.

A sends f(a) to B, B sends b to A.

Having received b, A can compute a+ b mod 2 and determine the winner.

A sends a to B. Now B can also compute a+ b mod 2 and determine the winner.

B can plug the received a into f and verify that it does indeed produce the value f(a) previously
transmitted by A, showing that A did not change the value of a after receiving b, and thus the process
was fair.

References

1. Gilles Brassard, Modern Cryptology: A Tutorial, Lecture Notes in Computer Science, vol. 325,
Springer-Verlag, 1988.

2. Simon Singh, The Codebook, Anchor Books, 1999.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

Part 7

Shannon’s information theory

We will learn here (1) that entropy is a measure of the fundamental information content of messages,
giving the minimal number of binary bits per symbol needed to encode the source; (2) that information
sources can be compressed via block coding, so that the number of binary digits in the recoded message
per symbol in the original message is very near the entropy; and (3) that even if messages are going
to be altered by random noise, they can first be encoded in such a way that the original message can
be recovered with an arbitrarily low probability of error. These startling statements were discovered in
the late 1940’s by Claude Shannon, and they enable many of the technological marvels we use today:
computers, CD’s and DVD’s, telephones, and so on. This is pretty much a retelling of the account in
[?].

7.1 Information sources

The mathematical study of information processing begins with the concept of an information source.
In our everyday experience one of our most familiar sources of information is the natural (human)
language which we may be hearing or reading at any particular time. The sources of mathematical
information theory do include idealized models of natural languages, but they are not the only starting
point for analyzing such languages rigorously. The field of formal languages seeks to understand the basic
principles governing human languages, computer languages, and even structures in chemistry, biology,
and the physics of materials, by carefully analyzing the properties of abstract languages.

Let D be a finite alphabet. The elements of D will be called symbols or letters. Frequently D =
{0, 1, . . . , d − 1} for some d ∈ N. The symbol D∗ denotes the set of all finite strings on the symbols in
D, including the empty string, ε.

Definition 7.1.1. A formal language is any set of finite strings on a finite alphabet, that is, any L ⊂ D∗
for any finite alphabet D.

This definition is very very broad, It’s useful, because it is so inclusive. But it’s not too useful, since
it includes so many languages of so many different kinds. Analysis can begin when we consider particular
examples of languages and languages of particular kinds.

Example 7.1.1. Let D = {0, 1} and let Le denote the set of all strings on the alphabet D which contain
an even number of 1’s.

Example 7.1.2. Again let D = {0, 1} and let Lp denote the set of palindromes on D, that is, all strings
on the alphabet D which read the same forwards as backwards.

Example 7.1.3. Let L= denote the set of all strings on D = {0, 1} which contain the same number of
0’s as 1’s.

Example 7.1.4. Let L11 denote the set of all strings on D = {0, 1} which do not contain two consecutive
1’s.

49

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

50 Part 7. Shannon’s information theory

Exercise 7.1.1. For each of the four languages in the preceding examples, list all the words in the
language of length less than or equal to four.

In the Notes on Elementary Probability we defined an information source as a system X = (Ω(D),B,P, σ),
or (Ω+(D),B,P, σ). Here D is a finite alphabet; Ω(D) and Ω+(D) are the sets of one- or two-sided in-
finite strings on the alphabet D; B is a family of subsets of the set of strings on D which contains all
the cylinder sets and is closed under complementation and countable unions and intersections; P is a
probability measure defined for all sets in B; and σ is the shift transformation, which makes time go
by or allows us to read one incoming symbol from the source at a time. The set of all finite strings
found in all infinite sequences emitted by the source is the language of the source. Usually we deal with
sources that are stationary and ergodic. By a major theorem of the twentieth century, every word in
the language of a stationary ergodic source appears in almost every sequence emitted by the source with
limiting frequency equal to the probability of the cylinder set to which it corresponds.

7.2 The possibility of information compression

One if by land, two if by sea;
And I on the opposite shore will be,
Ready to ride and spread the alarm
Through every Middlesex village and farm,
For the country folk to be up and to arm.

Henry Wadsworth Longfellow

Suppose that someone has a choice of only two messages to send. Each message could consist of even
a lengthy string of symbols, but the information boils down to just the choice between two alternatives:
whether it is message A that is sent or message B. The messages could be numbered 0 and 1, or
represented by one lantern or two in the steeple of Christ Church, Boston. (Interestingly, 0 lanterns or 1
lantern might not work: often one needs also to signal that a message is present.) This situation shows us
in action the fundamental unit of information: the designation of one of two possibilities constitutes the
bit. Information is measured by the minimum number of bits—elementary yes-no decisions—required to
convey it.

In the Paul Revere story, we see that the message “The British are coming by land” has been
compressed to the message “1”, and the message “The British are coming by sea” has been compressed
to the message “2”. Any two symbols could have been used instead of 1 and 2, for example 0 and 1 would
be a basic choice. But it takes a minimum of two symbols to distinguish the two distinct messages.

If we have 3 or 4 messages to choose among, we can distinguish them by assigning to each a different
string of length 2 on the symbols 0 and 1. The original message strings could be quite long, but once
the assignment of strings is made and agreed on, we have to send only 00, 01, 10, or 11. The messages
have been compressed. If we have m messages to send, and we want to assign to each one a different
binary string of length k, we must have

(7.1) 2k ≥ m, that is, k ≥ log2m :

It takes binary strings of length log2m to distinguish m different messages.

Suppose now that someone has a repertoire of messages from which to choose, sending one a day, but
with varying probabilities. Suppose further that the messages have widely varying lengths. We can also
assign binary strings of varying lengths to these messages, and it would be smart to use shorter strings
for the more probable messages. Then on average we will be sending fairly short messages, achieving
information compression.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

7.2. The possibility of information compression 51

Example 7.2.1. Dagwood goes to the same diner for lunch every day. Usually he orders either “the
special”, whatever it is, unless he doesn’t like it, and then he orders chili, extra hot, with lettuce and
tomato on the side, ranch dressing, and two croissants. In the latter case, to save time, he just says “the
usual”. Very rarely, he is tired of chili and the special is unattractive, so he orders “pea soup and meat
loaf with French fries”. Note the economical use of letters on the average.

Example 7.2.2. During the summer in North Carolina, the weather forecast is often for partly cloudy
weather, temperature in the high 80’s, chance of afternoon and evening thundershowers. Sometimes TV
forecasters will even say, “Same as yesterday”. When the weather is unusual (which happens not so
often), longer descriptions take place.

Here is a fairly efficient way to encode English text for compression that is suggested in the book
by Pierce. Let us take for our source alphabet D the 26 English letters plus space, ignoring upper and
lower case, punctuation marks, and other special characters. (If really needed, they can be spelled out.)
In order to encode these m = 27 symbols by binary strings, that is, by a code alphabet C = {0, 1}, we
would need strings of length at least k = 5, since 5 is the smallest integer k for which 2k ≥ m (25 = 32).
But we propose to encode text not letter by letter, but actually word by word, at least for the most
probable words.

Note: In what follows, we will also consider a channel, which typically accepts one binary digit per
second and outputs one binary digit per second (maybe different strings come out than are put in).
Then the code alphabet C = {0, 1} will also be the channel alphabet. Any source to be sent across the
channel will have to be first encoded into strings on the channel alphabet. (This happens all the time,
for example when data put into a computer is converted to binary strings.)

Suppose we use binary strings of length 14 to encode our source, standard English text on an alphabet
of 32 characters. There are 214 = 16, 384 such strings. Let’s assign 16, 384−32 = 16, 352 of these strings
to the 16, 352 most common English words and assign the 32 remaining strings to our 26 letters, space,
and the most common punctuation symbols, so as to be able to spell out any words not in our list of
the most probable 16, 352.

If we go to encode an English text into binary strings of length 14 in this way (Plan A), most of
the time we will be encountering the most frequent words, and occasionally we will have to spell out
an unusual word that comes up. Is there any saving over character-by-character encoding? If we used
binary strings of length 5 to encode each of our 32 characters (Plan B), an English string of length N
would be encoded to a binary string of length 5N . What length binary string would Plan A yield?

The answer depends on the lengths of the words involved, since in Plan A we encode word by word.
Pierce states that on average English words have length 4.5 characters, hence really 5.5 since a space
precedes each word. So in Plan A, our input English text of length N contains approximately N/5.5
words, and most of them are probable. Each of these probable words is assigned a binary string of length
14, and the result is a binary string that is not much longer than (N/5.5)14 ≈ 2.55N . Thus Plan A
gives us an encoding that is about half the length of Plan B’s character-by-character encoding.

In Plan B, we are using 5 binary digits per symbol. In Plan A we use only 2.55 binary digits per
symbol—some excess, redundant, or predictable chaff has been winnowed out. Somehow the essential
information in the message is less than 2.55 bits per symbol. Note that Pierce uses bit for the basic unit
of information—a fundamental yes-no answer—and binary digit for the symbols 0 and 1.

The minimum number of binary digits per symbol needed to encode a message is taken to be the
information content per symbol of the message. It is called the entropy and is measured in bits per
symbol.

So we could have a source, such as English text, that is presented as 5 binary digits per symbol, say
if we look at it character by character. But in actual fact the entropy of English text is less than 5 bits
per symbol–on average, English text can be encoded by binary strings of length 2.55 per symbol. In
fact, it turns out that English text has entropy about one bit per symbol:

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

52 Part 7. Shannon’s information theory

A typical English text of length N (a string on 32 characters, say) can be encoded to a binary string
of approximately the same length!

7.3 The entropy of a source

The idea was announced at the end of the preceding section: the entropy of an information source is the
minimum number of binary digits per symbol needed, on average, to encode it. The entropy is measured
in bits per symbol. We will see how to try to achieve this compression by block coding. For now, we
focus on three equivalent definitions of the entropy of a source, which do not require considering all
possible encodings. Each definition gives its own insight into the idea.

1. The entropy of a source is the average information per symbol that it conveys. How to quantify
this?

One key idea is that the amount of information gained equals the amount of uncertainty removed.

Another is that when we are told that a highly probable event has occurred we gain less information
than when we are told that a highly improbable event has occurred. So when we are told that an event
A of probability P (A) has occurred, we say that the amount of information gained is − log2 P (A) bits.
A couple of points to help explain this:

• If P (A) = 1, so that A is almost sure to occur, then the information conveyed in telling us that A
occurred is 0.

• If P (A) is very small, then when we are told that P (A) occurred we gain a lot of information—we
are really really surprised.

• We use log2 (logarithm base 2) because we want to measure the information in bits—the number
of binary digits required to convey it. Recall that each simple yes-no distinction can be conveyed
by giving one binary digit, 0 or 1. If the two possibilities are equally likely, each yields one bit of
information. This gibes with the fact that if P (A) = P (Ac) = 1/2, then − log2 P (A) = log2(1/2) =
log2(2) = 1. If we use natural logarithms, that is ln = loge (e = 2.718281828459045 . . .), the unit
of information is sometimes called the nat.

• If A1 and A2 are independent events, so that P (A1 ∩ A2) = P (A1)P (A2), then the information
gained in learning that both events occurred is the sum of the information gains from learning
that each of them has occurred. This is reasonable, since for independent events the occurrence of
either one does not affect the probability of occurrence of the other. This point is one of the main
justifications for the use of the logarithm in the definition of information.

Exercise 7.3.1. Calculate log2 x in case x = 32, 1/16, 20, and −4.

Suppose we have a source that is emitting symbols from a finite alphabet D = {0, 1, . . . , d − 1},
symbol i occurring with probability pi (but the symbols do not necessarily occur independently of one
another). If we were to read just one symbol, the one that is arriving just now, our average information
gain would be

(7.2) H(p) = −
d−1∑
i=0

pi log2 pi.

Note that here our probability space is (Ω(D),B, P), where Ω(D) is the set of two-sided infinite sequences
on the alphabet D. If we define f(x) = − log2 px0 , the logarithm of the probability of occurrence of the
symbol being read at time 0, then the above average information gain is just the expected or average
value of the random variable f :

(7.3) H(p) = E(f).

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

7.3. The entropy of a source 53

If the symbols were actually coming independently (that is, if we had a Bernoulli source—see §3 of
the notes on probability) Equation 7.2 would actually give the entropy of the source. In general, though,
occurrence of certain symbols can influence the probabilities of occurrence of other ones at various times,
thereby affecting the amount of new information gained as each symbol is read. The three definitions
of entropy of a source which we are here working up deal with this possible interdependence in three
different ways. The first one suggests that we sliding block code the word into long blocks, say of length
n, considering these as new symbols; apply Formula (7.2) to this new source to get an idea of its entropy
(actually an overestimate); divide by n to get an overestimate of the entropy of the original source, in
bits per original symbol; and hope that these numbers converge to a limit as n→∞ (in fact they will).

Let’s describe this more precisely, with mathematical notation. Denote by Dn the collection of all
words of length n on the elements of the alphabet D. The sliding block code mentioned above associates
to each infinite sequence x ∈ Ω(D) with entries from D the sequence sn(x) ∈ Ω(Dn) with entries n-blocks
on the alphabet D defined by

(7.4) (sn(x))j = xjxj+1 . . . xj+n−1 for all j ∈ Z.

As we shift along the sequence x one step at a time, we see a sequence of symbols from Dn, which is
the new sequence on the new alphabet of n-blocks.

Carrying out the strategy outlined in the preceding paragraph leads to the definition of the entropy
of the source as

(7.5) h(X) = lim
n→∞

[
− 1

n

∑
B∈Dn

P (B) log2 P (B)

]
.

We repeat that this number is supposed to give the average information received per symbol (which
equals the amount of uncertainty removed, or the degree of surprise) as we read the symbols emitted by
the source one by one.

2. The second definition measures our average uncertainty about the next symbol to be read, given all
the symbols that have been received so far. Naturally this involves the idea of conditional probability—
see §2 of the Notes on Elementary Probability. Given a symbol s ∈ D and a block B ∈ Dn, let us agree
to denote by P (s|B) the conditional probability that the next symbol received will be s, given that the
string of symbols B has just been received. Since our source is stationary, the time when we are waiting
to see whether s is sent does not matter, so we may as well take it to be the present, time 0. Thus

(7.6)

P (s|B) =
P{x ∈ Ω(D) : x−n . . . x−1 = B, x0 = s}

P{x ∈ Ω(D) : x−n . . . x−1 = B}

=
P (Bs)

P (B)
.

Given that a block B ∈ Dn has just been received, according to the preceding discussion (in con-
nection with Definition 1 of entropy), our average information gain upon receiving the next symbol
is

(7.7) −
∑
s∈D

P (s|B) log2 P (s|B).

We average this over all the possible n-blocks B, weighting each according to its probability, and then
take the limit as n→∞, so that we are allowed to look farther and farther back into the past to decide
how surprised we ought to be when a symbol s arrives at time 0. This gives us the second definition of
the entropy of the source:

(7.8) h(X) = lim
n→∞

[
−
∑
B∈Dn

P (B)
∑
s∈D

P (s|B) log2 P (s|B)

]
.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

54 Part 7. Shannon’s information theory

We repeat that this measures our average information gain when a symbol is received at time 0, given
all of the symbols that have been received in the past.

3. The third description that we present of the entropy of a (stationary, ergodic) source is actually
a theorem, due to Claude Shannon, Brockway McMillan, and Leo Breiman. It leads to methods for
finding the entropy of a source by examining the typical sequences that it emits. With probability 1,

(7.9) h(X) = lim
n→∞

− 1

n
log2 P (x0x1 . . . xn−1).

This implies that for large n, there are approximately 2nh(X) probable n-blocks B on the symbols of D,
each with probability approximately 2−nh(X). This is because for the initial n-block B = x0x1 . . . xn−1
of a typical sequence x emitted by the source, for large n we will have

(7.10) h(X) ≈ − 1

n
log2 P (B),

so that

(7.11) log2 P (B) ≈ −nh(X) and hence P (B) ≈ 2−nh(X).

This third “definition” of the entropy h(X) of a stationary ergodic source X , as the exponential growth
rate of the number of probable n-blocks, substantiates our initial effort to understand the entropy of a
source as the minimal average number of binary digits per symbol needed to encode it. Recall Formula
(7.1): In order to be able to assign a different binary string of length k to each of m messages, we need
k ≥ log2m. Now choose n large enough so that there are approximately m = 2nh(X) probable n-blocks.
Using the strategy outlined in the preceding section, with k ≥ log2m = nh(X), we can assign a binary
string of length k to each of these probable n-blocks (reserving a few binary strings to assign to basic
characters, so as to be able to spell out improbable words). The result is that, on the average, strings
of length n are coded one-to-one by binary strings of length k ≈ log2m = nh(X), so that the source is
encoded by

(7.12)
k

n
≈ nh(X)

n
= h(X) binary digits per symbol.

(It takes some further argument to see that it is not possible to improve on this rate.)

Example 7.3.1. The entropy of a Bernoulli source (see §3 of the Notes on Elementary Probability)
which emits symbols from an alphabet D = {0, 1, . . . , d − 1} independently, symbol i appearing with
probability pi, is

(7.13) H(p0, . . . , pd−1) = −
d−1∑
i=0

pi log2 pi.

This can be seen by easy calculation based on any of the three definitions of entropy given above.

Example 7.3.2. Consider a Markov source as in §4 of the Notes on Elementary Probability on the
alphabet D = {0, 1, . . . , d − 1} determined by a probability vector p = (p0, . . . , pd−1), which gives
the probabilities of the individual symbols, and a matrix P = (Pij), which gives the probabilities of
transitions from one symbol to the next, so that

(7.14) P{x ∈ Ω(D) : xn = j|xn−1 = i} = Pij for all i, j, n.

A short calculation based on Definition 2 above shows that this source has entropy

(7.15) H(p, P) = −
d−1∑
i=0

pi

d−1∑
j=0

Pij log2 Pij .

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

7.4. The entropy of a language 55

Exercise 7.3.2. Suppose we have a source X on the alphabet D = {0, 1} which emits 0’s and 1’s with
equal probabilities, but subject to the requirement that no 0 can be emitted immediately after another
0, and no 1 can be emitted immediately after another 1. Use each of the three preceding definitions of
entropy to calculate the entropy of this source.

Exercise 7.3.3. Given a source X = (Ω(D),B,P, σ) as above and n = 1, 2, . . . , we can associate to it
the n-blocks source

(7.16) X (n) = (Ω(Dn),B(n),P(n), σn),

as in the beginning of §3 of the Notes on Elementary Probability. The symbols of the new source are
n-blocks on the original alphabet D, the observable events and probability measure are defined in a
natural way (note—not necessarily assuming that the n-blocks come independently), and we now shift
n steps at a time instead of 1, in order always to shift to the next n-block. Use as many as possible of
the definitions or explanations of entropy given above to verify that h(X (n)) = nh(X).

7.4 The entropy of a language

We have just seen that a stationary ergodic source emits, for large n, about 2nh(X) probable blocks of
length n. Given any language L on a finite alphabet D, we can ask for a number h(L) such that the
total number of words of length n in the language is approximately 2nh(L). If we define Ln to be the set
of words in L that have length n, and |Ln| to be the size of this set, that is, the number of words in L
that have length n, we seek

(7.17) h(L) = lim
n→∞

1

n
log2 |Ln|.

Sometimes this limit exists, and then we call it the entropy or topological entropy of the language. If X
is a source that emits only words from a language L, then it follows from above that

(7.18) h(X) ≤ h(L).

Exercise 7.4.1. Calculate or at least estimate the entropies of the languages in the examples in §1.

7.5 Source coding for compression

So far we have implicitly been assuming that we are dealing with a noiseless channel: a source X is
emitting symbols from an alphabet D, and we receive exactly what is sent (or at least we can recover,
with probability 1, what was sent from what was received). (Soon we will consider the possibility that
there may be random errors, so that what is received may differ from what was sent.) We have also
considered recoding the source, perhaps replacing strings on the alphabet D by binary strings, so as to
improve (lower) the average number of new binary digits per old symbol, or to be able to input our
messages to a channel which accepts and puts out only binary strings. For example, encoding English
text character by character requires about 5 binary digits per character (allowing for 32 characters);
but we saw above how to recode so that in a long typical text we use only about 2.55 binary digits per
English character.

Shannon’s Source Coding Theorem says that given a stationary ergodic source X of entropy h(X), it
is possible to encode the strings output by the source in a one-to-one (uniquely decodable) way so that
the average number of binary digits used per source symbol is as close as we like to the entropy of the
source. Moreover, we cannot recode to get the average number of binary digits used per source symbol
to be less than the entropy of the source.

In Section 7.3 we saw the possibility of doing this sort of “information compression”, but the method
envisaged there depended on forming a list of the most probable blocks of a certain length that are emitted
by the source that we are trying to code. There are more efficient and practical ways to accomplish

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

56 Part 7. Shannon’s information theory

this goal, devised by Shannon and Fano, Huffman, Lempel and Ziv (used for example in computer data
compression programs like gzip), and others. Pierce presents the method of Huffman coding:

List the symbols to be encoded (possibly the set Dn of words of some fixed length length n emitted
by the source) in order of decreasing probabilities. We operate on this list of probabilities, converting it
into a new list. Choose two of the lowest possible probabilities in the list and draw lines from each to
the right that meet. Label the upper line with 1 and the lower with 0. At the joining point, enter the
sum of the two probabilities; this replaces the pair of probabilities that we started with, thus giving us
a new list of probabilities whose length is 1 less than that of the original.

Continue in this way, constructing a tree with edges labeled by 1 and 0 and vertices by probabilities,
until we arrive at a vertex labeled by probability 1. Now starting from this final vertex, reading right
to left, write down the labels on the edges encountered as one traverses the graph toward an original
symbol s. The resulting binary string, b(s), is the codeword assigned to s, and the set of codewords is
called the Huffman code assigned to the set of source words to be encoded.

Here are a couple of important points about this Huffman coding procedure:

• The Huffman code is a variable-length code: each of m source symbols is assigned a binary string
of length less than or equal to m.

• The set of codewords is prefix free: no code word is an initial segment of any other codeword. This
guarantees that the code is invertible: each string of codewords can be parsed into a unique string
of source words.

• When a string of symbols from a Bernoulli source X of entropy h(X) is encoded by the Huffman
procedure, the average number of binary digits used per symbol is less than h(X) + 1.

This last observation requires some proof, which we do not attempt here. But we can see immediately
how it could yield Shannon’s Source Coding Theorem. Choose a large n and form the source X (n) which
reads n-blocks of the original source, always moving from one full n-block to the next (by applying the
n’th power of the shift transformation). By Exercise 7.3.3, this new source has entropy h(X (n)) = nh(X).
Moreover, it is approximately Bernoulli, in the sense that

(7.19) −
∑
B∈Dn

P (B) log2 P (B) ≈ h(X (n))

(see Formula (7.5)). When the symbols of X (n) are encoded to binary strings by the Huffman procedure,
according to the above we use, approximately and on average, less than h(X (n)) + 1 = nh(X) + 1 binary
digits per symbol of X (n), and therefore we use on average less than

(7.20)
h(X (n)) + 1

n
=
nh(X) + 1

n
= h(X) +

1

n

binary digits per symbol of the original source X .

Finally, we attempt to explain the discussion in Pierce, pp. 97–98, about the relation of this theorem
to a kind of channel capacity. Suppose that we have a noiseless channel which accepts binary strings as
inputs and also puts out binary strings—maybe not exactly the same ones, but at least in an invertible
manner, so that the input can be recovered from the output, at least with probability 1. Let us also
introduce a time element for the channel, so that it can transmit τ binary digits per second. Now if
n-blocks from a source X are coded to binary strings of length k to be fed into the channel, presumably
with k/n on average not much larger than h(X), then τ binary digits per second will correspond to
approximately τn/k symbols of the original source traversing the channel per second (in binary digit
encoded form).

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

7.6. The noisy channel: equivocation, transmission rate, capacity 57

Example 7.5.1. Suppose we have a source whose 2-blocks are coded by binary strings of average length
4, and we have a channel of time-capacity τ = 5 binary digits per second. Then binary strings move
across the channel at 5 digits per second. This corresponds to source strings being input at one end of
the channel and output at the other end, without taking into account any encoding or decoding time, at
5(2/4) symbols per second. Each binary string of length 1 makes it across the channel in 1/5 seconds,
so each binary string of length 4 makes it across the channel in 4/5 seconds and corresponds to a source
string of length 2, so source strings are being conveyed at (4/5)/2 seconds per symbol. Then take the
reciprocal.

Thus we have an average transmission rate of source symbols across this channel of

(7.21) τ
n

k
=

τ

k/n
source symbols per second.

Recalling that we can make k/n, which is always greater than or equal to h(X), as close as we like to
h(X), but not any smaller, we see that the rate in (7.21), which is always smaller than τ/h(X), can
be made as close as we like to τ/h(X), but not any greater. This is supposed to explain the set-off
statements at the top of p. 98 in Pierce.

Exercise 7.5.1. A source emits once a second one of 6 different symbols, with probabilities 1/2, 1/4, 1/8, 1/16, 1/32, 1/32,
respectively, independently of what has been emitted before or will be emitted later.

(a) Calculate the entropy of the source.

(b) Devise a Huffman code for this source.

(c) If a typical long message of length N emitted by the source is recoded with the code from part
(b), what will likely be the length of the resulting binary string?

(d) If the source is Huffman encoded as in Part (b) and then is put into a channel that conveys 0.57
binary digits per second, what will be the transmission rate in source symbols per second?

7.6 The noisy channel: equivocation, transmission rate, capacity

In the preceding section we saw how to recode a source X of entropy h(X) to compress its output,
representing it by binary strings with a rate not much more than h(X) binary digits per source character.
Now we consider how to add some check digits to protect against errors in transmission. As before, we
suppose that the output of our source is recoded into binary strings and fed into a channel which accepts
and puts out binary strings (or more generally accepts strings on an alphabet A and puts out strings on
an alphabet B), but we now admit the possibility of random alteration of the strings during transmission,
so that the input may not be recoverable, with probability 1, from seeing the output. Can we protect
against this? How well? At what cost?

One way to detect errors in transmission is just to repeat every digit twice: for example, to send a
string 010010, put 001100001100 into the channel. This method will detect single isolated errors, but
it entails the cost of doubling transmission time. To correct single isolated errors, one could triple each
digit, and this would multiply the cost even more. Can we correct all errors (with probability 1)? If so,
at what cost?

A channel is actually a family of probability measures, one for each infinite string that can be fed into
the channel, specifying the probabilities of the observable events regarding the output string, namely that
in the output we see a particular finite-length block at a particular time. Further technical conditions
must be put on channels to ensure that they make sense and that the theorems we want to prove are
true. This work is far from finished. In this section we deal with a very simple kind of noisy channel,
the discrete memoryless channel, for which each incoming symbol produces the various possible output

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

58 Part 7. Shannon’s information theory

symbols with fixed probabilities, independently. Thus we are given transition probabilities

(7.22)
px(y) = probability that y comes out when x is put in,

qy(x) = probability that when y comes out x was put in,

where x, y are symbols of the channel alphabet (for us usually 0 and 1). We will use the same notations
for analogous probabilities when x and y are strings on the input and output alphabets.

Given such a channel, it turns out that we can associate to it an important number, C, called the
capacity of the channel, which tells the complete story about the prospects for coding a source for error
protection before trying to send it across that channel. We will also define a quantity E, called the
equivocation, which is a measure of the amount of information lost on average when messages are sent
across the channel. We also consider F , the average frequency of error, the proportion of digits in the
limit (in long messages) which are changed in transmission across the channel. Once these quantities
are understood, we can appreciate

Shannon’s Channel Coding Theorem: Given a channel of capacity C, a source X of entropy h(X) < C,
and any number ε > 0, we can recode the source so that when it is sent over the channel and the result is
decoded both the frequency of error and the equivocation are less than ε. If h(X) > C, we must always
have the equivocation E ≥ h − C, but by recoding the source we can make it as close to h − C as we
like: given ε > 0, we can have h− C ≤ E < h− C + ε.

In this statement, entropy, capacity, etc. are thought of in bits per second. If we eliminate time as a
consideration, then this remarkable result says that any (stationary ergodic) source can be sent across
any (binary symmetric) channel virtually error free: first compress the source by source coding, then
assign n-blocks of the source to long enough k-blocks of the channel. The theorem guarantees that we
can recode to reduce the frequency of errors, and the equivocation, below any desired level. Similar
results apply to more general channels, but satisfyingly general and clean results have not yet been
achieved.

It is also remarkable that this theorem is proved by a random coding argument—basically counting.
One selects k and n large and with n/k having the right ratio (close to C/h(X) in case all alphabets
involved are {0, 1}). Then a calculation is done to show that when each n-block of the source is assigned
to a different randomly chosen k-block to be put into the channel, with high probability we get a recoding
of the source that satisfies the theorem. Another way to say it refers to the approximately 2nh(X) “good
n-blocks” put out by the source (see the third definition given above of the entropy of the source).
It turns out that there are also approximately 2kC distinguishable k-blocks that can be put into the
channel, blocks whose corresponding outputs will probably be very different from one another. (In fact
when we choose this many k-blocks at random, if k is large enough we will with high probability get a
set of distinguishable blocks.) So when we assign the good n-blocks of the source to the distinguishable
k-blocks to be put into the channel, we code most of the output of the source in a way that the channel
is unlikely to confuse.

To finish off our discussion of this amazing theorem, we have to define the key terms “capacity”
and “equivocation”, and before that we have to define and examine some other concepts as well. We
assume that we have a stationary ergodic source X , with an alphabet A, that has already been encoded,
if necessary, so that its alphabet matches the input of our channel. When this source is put into the
channel, the output, the composition of input source and channel, constitutes another source, Y = S(X),
on another alphabet B (usually {0, 1}). We assume that the channel has the property that this source
Y will also always be stationary and ergodic. (It is difficult to describe exactly which channels have this
property, but the binary symmetric one does.) We will now consider strings x of length n that are put
into the channel and examine the strings y of length n that emerge (we assume zero time delay).

(1) The joint input-output process X ∨ Y is the source whose output consists of infinite strings of
pairs of symbols (a, b), with a a symbol emitted by the source X at each time j and fed into the channel,
and b the symbol output by the channel at the same time j. This corresponds to a know-it-all observer
who can see both the input and the output of the channel at the same time. To avoid complicated

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

7.6. The noisy channel: equivocation, transmission rate, capacity 59

notation, we use the same symbol P to describe the probabilities of events related to this process as for
the processes X and Y. The entropy of the joint input-output process is

(7.23) h(X ∨ Y) = − lim
n→∞

1

n

∑
x∈An

y∈Bn

P (x, y) log2 P (x, y).

(2) We define the uncertainty about the output, given the input, to be

(7.24) HX (Y) = − lim
n→∞

1

n

∑
x∈An

y∈Bn

p(x)px(y) log2 px(y).

The sum gives the weighted average, over all input strings x of a given length n, of the uncertainty about
the output (which equals the amount of information gained or the degree of surprise when the output is
received) when the input string x is known.

(3) We define the uncertainty about the input, given the output, to be

(7.25) HY(X) = − lim
n→∞

1

n

∑
x∈An

y∈Bn

q(y)qy(x) log2 qy(x).

The sum gives the weighted average, over all output strings y of a given length n, of the uncertainty
about the input when the output string y is known. This quantity measures the loss of information when
the source is sent across the channel, and it is called the equivocation.

(4) We have the key relation

(7.26) h(X ∨ Y) = h(X) +HX (Y) = h(Y) +HY(X).

The first equality says that the uncertainty about what will come out of the joint source is the sum of
the uncertainty about what is put into the channel plus the uncertainty about what will come out of the
channel when what is put in is already known. Thus these equations seem to make some sense.

(5) When a source X is connected to the channel as above, producing an output process Y and a
joint input-output process X ∨ Y, we define the information transmission rate to be

(7.27)

R(X) = h(X)−HY(X)

= h(Y)−HX (Y)

= h(X) + h(Y)− h(X ∨ Y).

This probably calls for some discussion. The first expression for R, namely R(X) = h(X) − HY(X),
says that the rate at which information comes across the channel equals the rate at which the source
puts information into the channel, minus the amount lost in the channel—the uncertainty remaining
about what the input was once we see the output. The second expression says the rate is the amount of
information received (uncertainty about the output) , minus the spurious extra uncertainty due to noise
in the channel—the uncertainty about what will come out even when we know what was put in. The
third expression says that information flow across the channel is given by the sum of the uncertainties
about the input and output separately, minus the uncertainty about the process in which the input and
output are connected.

(6) Finally we can define the capacity C of the channel to be the maximum (more precisely supremum,
abbreviated sup—the supremum of the interval [0, 1) is 1, while this set has no maximum) of all the
possible information transmission rates over all the possible stationary ergodic sources that can be fed
into the channel:

(7.28) C = sup{R(X) : X is a source input to the channel}.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

60 Part 7. Shannon’s information theory

Example 7.6.1. Let’s consider the binary symmetric channel in which when a symbol 0 or 1 emerges,
there is probability α ∈ (0, 1) that it is the same as the symbol that was put in, independently of all
other symbols. Thus

(7.29) q0(0) = q1(1) = α, while q0(1) = q1(0) = 1− α.

There are reasons to believe that the maximum information transmission rate for such a channel will be
achieved by the Bernoulli source (see §6 of the Notes on Elementary Probability) which at each instant
emits one of the the symbols 0 and 1, each with probability 1/2, independently of what is emitted at
any other instant. (At least for this source we have maximum uncertainty about what it will emit, and
the symmetry of the channel makes us think that the optimal source should also be symmetric). Then
the symbol output probabilities are q(0) = q(1) = 1/2, and because of independence in Formula (7.25)
we can look just at 1-blocks and do not have to take a limit. We find that

(7.30) HY(X) = −1

2
[α log2 α+ (1− α) log2(1− α) + (1− α) log2(1− α) + α log2 α],

so that

(7.31) C = h(X)−HY(X) = 1 + α log2 α+ (1− α) log2(1− α).

Note that

(7.32) H(α) = −[α log2 α+ (1− α) log2(1− α)] ≥ 0,

so that C ≤ 1. Moreover, if α = 1/2, so that we have no idea whether each symbol coming out equals
the one put in or not, the channel capacity is 0. On the other hand, the capacity is the maximum of 1
both when α = 0 and when α = 1: when the symbol out is always different from the symbol in, we can
still recover the input message perfectly well.

7.7 Coding for error protection

Shannon’s Channel Coding Theorem establishes the existence of good error-correcting codes by a random
coding argument and so does not tell us how to construct such good sets of codewords in practice. Finding
methods to construct good codes, especially ones that are easy to implement, continues as an active area
of research, some of it involving very fancy modern mathematics, with results which have immediate
impact in modern society.

We look here at an early example of a clever error-correcting coding system, the Hamming codes.
For each n = 2, 3, . . . there is a Hamming code consisting of binary strings of length 2n − 1. The first
2n − n − 1 binary digits are data bits, and the final n are check bits. (We relax here the distinction
between “binary digits” and “bits”.) For example, consider the case n = 3, which gives us strings of
length 7 with 4 data bits, thus called the Hamming (7, 4) code. Each data string of length 4 (and there
are 24 = 16 of them) a = a1a2a3a4 is assigned a string c = c(a) = c1c2c3 of 3 check bits according to the
following rule, in which all the additions are modulo 2:

(7.33)

c1 = a1 + a2 + a3

c2 = a1 + a3 + a4

c3 = a2 + a3 + a4.

Let’s think for a moment about the strategy behind making a set of codewords. We have some data
that we want to send across a noisy channel. We will assign each of our data symbols (or n-blocks,
possibly the result of a preliminary source coding for data compression) to a different codeword to be
put into the channel. We want our codewords to be somehow stable when they go across the channel,
so that when we look at what comes out of the channel we will have a pretty good idea of what went in.
The channel may change some of the digits in each codeword, but we want the code to be such that it

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

7.8. Comments on some related terms and concepts 61

will be very unlikely that two codewords will change to the same string. A natural desideratum, then,
is that every codeword should differ from every other codeword in a large number of places. There is an
associated concept of distance, called the Hamming distance: if u and v are binary strings of length n,
we define the Hamming distance between them to be the number of places at which they disagree:

(7.34) dH(u, v) =

n∑
i=1

|ui − vi| =
n∑
i=1

[(ui + vi) mod 2].

(Note the convenience of arithmetic modulo 2: adding detects when two entries disagree.) Thus we look
for codes with many codewords, all at large Hamming distance from one another. And of course we want
them also to be short if possible. Visualizing the codewords as points in a space that are well spread
out may be helpful.

Note that the Hamming code given above is linear: the modulo 2 sum of two codewords is again a
codeword. This is because the check bits are just modulo 2 sums of certain data bits, so that if a data
word a has a check word c(a) added on its end, then c(a + a′) ≡ c(a) + c(a′) mod 2; thus if ac(a) and
a′c(a′) are codewords, so is their (entrywise modulo 2) sum, since it equals (a+ a′)c(a+ a′).

Of course the sum of a codeword with itself is the word of all 0’s, which we denote by 0. Then, with
addition modulo 2,

(7.35) dH(u, v) =

n∑
i=1

(ui + vi) = dH(u+ v, 0).

Thus the minimum distance of the code (the minimum distance between any two codewords) is the same
as the minimum distance from any nonzero codeword to 0, and this is the same as the weight t of the
code, which is the minimum number of 1’s in any nonzero codeword.

If we want to be able to correct E errors in the digits of any codeword due to noise in the channel,
we will want to use a code whose minimum distance is 2E + 1: then changing no more than E digits in
codewords will still keep them distinguishable. When we look at a word put out by the channel, we will
interpret is as the codeword that is closest to it in terms of the Hamming distance. For the Hamming
(7, 4) code given above, the weight, and thus the minimum distance, is 3, so we can correct 1 error in
transmission, but not 2. Note that this includes errors in transmission of either data or check bits.

With the (7, 4) code we can detect up to two errors in transmission of any codeword, since it requires
changing at least 3 entries to convert any codeword to another codeword. In general, a code with
minimum distance t will allow detection of up to t− 1 errors, and correction of up to b(t− 1)/2c errors.
(Recall that bxc means the greatest integer that is less than or equal to x.)

7.8 Comments on some related terms and concepts

Shannon’s brilliant approach handled information in a clean, mathematical, and useful way by avoiding
murky and complicated issues about meaning, usefulness, cost in terms of money or energy, and so on.
In this section we comment on several associated terms or concepts in a brief and incomplete manner
that is adapted to our current context.

7.8.1 Information

We have seen that information in Shannon’s sense is measured by the minimal number of binary digits
needed to convey it. Also, the amount of information gained equals the amount of uncertainty removed.
But what is information really? Is there no hope of pinning it down?

We are at no more of a loss here than we are in trying to say exactly what is mass, or force. As
explained in my freshman physics class by John Wheeler, a physical law, such as Newton’s Second Law
F = ma, can function first as a definition and then as a law for making predictions. One can measure

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

62 Part 7. Shannon’s information theory

a force, such as the propulsion due to a jet engine, on an object of a certain mass by observing the
acceleration produced. Then we can be sure that if the object is cut in half the acceleration will be
doubled. In the same way, information content is defined by comparison with an agreed on standard,
coding by means of binary digits.

7.8.2 Language

We can define a language as a tool for recording or transmitting information by means of physically
realizable symbols, thereby including spoken languages, chemical or microbiological signaling systems,
electronic or optical information systems, animal calls, and so on. In Section 7.1 we defined a (formal)
language to be any set of finite strings (words) on a finite alphabet. Any language can be studied from
a mathematical viewpoint if it can be encoded (maybe with some information loss) by means of strings
on a finite alphabet to produce a formal language.

7.8.3 Knowledge

We can define knowledge to be recorded information. Note that knowledge can be unconscious, nonverbal,
direct: human language is not needed in order to have knowledge. Infants, human or animal, can
recognize their (supposed) parents, and salmon can (chemically) recognize the streams where they were
born. We can know how to swim, ride a bicycle, or hit a topspin backhand without ever involving any
human language, even in thought. But in all of these examples, the relevant information is recorded
somewhere in the form of stored physical symbols of some kind.

7.8.4 Symbol

7.8.4.1

Thus far we have used the term “symbol” for a member of a finite alphabet which may be used to form
finite strings (words) or infinite strings (messages).

7.8.4.2

The word “symbol” can also be used to mean anything that stands for or represents something else.
Here are several examples:

a rose stands for love

a crown stands for the monarchy

the presidential seal stands for the office of president

a cross stands for the Christian faith

a crescent stands for the Muslim faith

in Stendahl’s novel, red stands for the military and black for the clergy

3 stands for the family of all sets that can be put in one-to-one correspondence with {0, 1, 2}

in a Wagner opera, a musical phrase can be a “leitmotif” that stands for a curse that is driving the
plot

7.8.5 Meaning

The meaning of a symbol (or collection of symbols) could be the (possibly mental) object or objects
behind it, along with their interrelationships. For example, in the movie Enigma the phrase “Mary
Jane Hawkins” stands for a sudden insight—as meaning suddenly emerges. Meanings can reside in the
associations or resonances that a symbol has with other symbols as well as in its history. Thus the
meaning of a word can be indicated by giving partial synonyms and antonyms as well as its etymology.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

7.8. Comments on some related terms and concepts 63

7.8.6 Ambiguity

Ambiguity occurs when a symbol or collection of symbols has several possible meanings. Ambiguity
adds richness, depth, and interest to literature—also to music, when reference of a musical phrase to
an underlying key is uncertain. In the movie Enigma there is ambiguity about the intentions and
motivations of the main characters. An analogue occurs in science, when several theories compete to
explain the same observed data.

7.8.7 Theory

A theory is a relatively short collection of general principles that explains many particular similar
phenomena (data). Slightly paraphrased, a theory is a simple, universal explanation for a complicated
collection of contingent data. Important examples are Newton’s theory of gravity, Darwin’s theory of
evolution and natural selection, and Einstein’s theory of special relativity and theory of general relativity.

7.8.8 Understanding

Understanding consists of the formation, verification, and application of an effective theory.

References

J. R. Pierce, Symbols, Signals and Noise, Harper Torchbooks, New York, 1961.

AMS Open Math Notes: Works in Progress; Reference # OMN:201804.110769; Last Revised: 2018-04-25 14:40:53

