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Preface
India has a rich tradition of intellectual inquiry and a textual heritage that goes back to several 

hundreds of years. India was magnificently advanced in knowledge traditions and practices 

during the ancient and medieval times. The intellectual achievements of Indian thought are found 

across several fields of study in ancient Indian texts ranging from the Vedas and the Upanishads to 

a whole range of scriptural, philosophical, scientific, technical and artistic sources. 

As knowledge of India's traditions and practices has become restricted to a few erudite scholars 

who have worked in isolation, CBSE seeks to introduce a course in which an effort is made to make 

it common knowledge once again. Moreover, during its academic interactions and debates at key 

meetings with scholars and experts, it was decided that CBSE may introduce a course titled 

‘Knowledge Traditions and Practices of India’ as a new Elective for classes XI - XII from the year 

2012-13.  It has been felt that there are many advantages of introducing such a course in our 

education system.  As such in India, there is a wide variety and multiplicity of thoughts, 

languages, lifestyles and scientific, artistic and philosophical perceptions. The rich classical and 

regional languages of India, which are repositories of much of the ancient wisdom, emerge from 

the large stock of the shared wealth of a collective folklore imagination. A few advantages given 

below are self explanatory. 

• India is a land of knowledge and traditions and through this course the students will become 

aware of our ancient land and culture.

• Learning about any culture particularly one's own culture - whatever it may be - builds 

immense pride and self-esteem. That builds a community and communities build harmony.

• The students will be learning from the rich knowledge and culture and will get an objective 

insight into the traditions and practices of India. They will delve deeply to ascertain how these 

teachings may inform and benefit them in future.

• The textbook has extracts and translations that will develop better appreciation and 

understanding of not only the knowledge, traditions and practices of India but also 

contemporary questions and issues that are a part of every discipline and field in some form or 

another. 

This course once adopted in schools across India can become central to student learning: each 

student brings a unique culture, tradition and practice to the classroom. The content is devised in a 

way that the educator becomes knowledgeable about his/her students' distinctive cultural 



background. This can be translated into effective instruction and can enrich the curriculum 

thereby benefitting one and all.  This insight has close approximation with the pedagogy of CCE.

The course is designed in a way that it embodies various disciplines and fields of study ranging 

from Language and Grammar, Literature, Fine Arts, Agriculture, Trade and Commerce, 

Philosophy and Yoga to Mathematics, Astronomy, Chemistry, Metallurgy, Medicine and 

Surgery, Life Sciences, Environment and Cosmology. This can serve as a good foundation for 

excellence in any discipline pursued by the student in her/his academic, personal and 

professional life. 

This book aims at providing a broad overview of Indian thought in a multidisciplinary and 

interdisciplinary mode.  It does not seek to impart masses of data, but highlights concepts and 

major achievements while engaging the student with a sense of exploration and discovery.   There 

is an introduction of topics so that students who take this are prepared for a related field in higher 

studies in the universities.

The examination reforms brought in by CBSE have strengthened the Continuous and 

Comprehensive Evaluation System. It has to be ascertained that the teaching and learning 

methodology of CCE is adopted by the affiliated schools when they adopt this course. The 

contents have to cultivate critical appreciation of the thought and provide insights relevant for 

promoting cognitive ability, health and well-being, good governance, aesthetic appreciation, 

value education and appropriate worldview. 

This document has been prepared by a special committee of convenors and material developers 

under the direction of Dr. Sadhana Parashar, Director (Academic & Training) and co-ordinated by 

Mrs. Neelima Sharma, Consultant, CBSE.

The Board owes a wealth of gratitude to Professor Jagbir Singh, Professor Kapil Kapoor, 

Professor Michel Danino, and all those who contributed to the extensive work of conceptualizing 

and developing the contents. I sincerely hope that our affiliated schools will adopt this new 

initiative of the Board and assist us in our endeavour to nurture our intellectual heritage.

Vineet Joshi

Chairman 



Convenor’s Note by Professor Jagbir Singh

In 2012, CBSE decided to introduce an Elective Course 'Knowledge Traditions and Practices of 

India' for classes XI and XII and an Advisory Committee was constituted to reflect on the themes 

and possible content of the proposed course. Subsequently Module-Preparation Committees were 

constituted to prepare ten modules for the first year of the programme to include the following 

Astronomy, Ayurveda (Medicine and Surgery), Chemistry, Drama, Environment, Literature, 

Mathematics, Metallurgy, Music and Philosophy. 

Each module has;

I. A Survey article

ii. Extracts from primary texts

iii. Suitably interspersed activities to enable interactive study and class work 

iv. Appropriate visuals to engender reading interest, and 

v. Further e- and hard copy readings.

Each module in the course has kept in mind what would be a viable amount of reading and 

workload, given all that the class IX students have to do in the given amount of time, and controlled 

the word-length and also provided, where needed, choices in the reading materials. 

Each Module consists of:

I. A Survey Essay (about 1500-2000 words) that introduces and shows the growth of ideas, texts 

and thinkers and gives examples of actual practice and production.    

ii. A survey-related selection of extracts (in all about 2000 words) from primary sources (in 

English translation, though for first hand recognition, in some cases, where feasible, the 

extracts are also reproduced in the original language and script).

iii. Three kinds of interactive work are incorporated, both in the survey article and the extracts - 

comprehension questions, individual and collective activities and projects (that connect the 

reading material and the student to the actual practice and the environment).

iv. Visuals of thinkers, texts, concepts (as in Mathematics), practices.

v. Internet audiovisual resources in the form of URLs.

vi. List of further questions, and readings.

The objective of each module, as of the whole course, is to re-connect the young minds with the 

large body of intellectual activity that has always happened in India and, more importantly, to 



enable them (i) to relate the knowledge available to the contemporary life, theories and practices, 

(ii) to develop, wherever feasible, a comparative view on a level ground of the contemporary 

Western ideas and the Indian theories and practices, and (iii) to extend their horizons beyond what 

is presented or is available and contemplate on possible new meanings, extensions and uses of the 

ideas - in other words to make them think.

We have taken care to be objective and factual and have carefully eschewed any needless claims or 

comparisons with western thought. Such things are best left to the readers' judgement.  

This pedagogical approach clearly approximates CBSE's now established activity-oriented 

interactive work inviting the students' critical responses. 

It is proposed to upload the first year's modular programme to be downloaded and used by 

schools, teachers and students. 

As a first exercise, we are aware that the content selection, a major difficult task, can be critically 

reviewed from several standpoints. We do not claim perfection and invite suggestions and 

concrete proposals to develop the content. We are eagerly looking forward to receiving the 

feedback from both teachers and students. That would help us refining the content choice, the 

length and the activities. We will also thankfully acknowledge any inadvertent errors that are 

pointed out by readers. 

The finalisation of this course is thus envisaged as a collective exercise and only over a period of 

time, the Course will mature. We know that perfection belongs only to God.

If our students enjoy reading these materials, that would be our true reward.  

Prof. Jagbir Singh

Convenor
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Mathematics in India: A Survey* 

 

As early Indian astronomers tried to quantify the paths of the sun, the moon, the planets 

and the stars on the celestial sphere with ever more accuracy, or to predict the 

occurrence of eclipses, they were naturally led to develop mathematical tools. 

Astronomy and mathematics were thus initially regarded as inseparable, the latter being 

the maid-servant of the former. Indeed, about 1400 BCE, the Vedāṅga Jyotiṣa, the first 

extant Indian text of astronomy, states in two different versions: 

Like the crest on the head of a peacock, like the gem on the hood of a cobra, 

jyotiṣa (astronomy) / gaṇita (mathematics) is the crown of the Vedāṅga śāstras 

[texts on various branches of knowledge]. 

 In fact, jyotiṣa initially referred to astronomy and mathematics combined; only later 

did it come to mean astronomy alone (and much later did it include astrology). 

First Steps 

India’s first urban development, the Indus or Harappan civilization (2600-1900 BCE), 

involved a high degree of town planning. A mere glance at the plan of Mohenjo-daro’s 

acropolis (or upper city), Dholavira (in the Rann of Kachchh) or 

Kalibangan (Rajasthan), reveals fortifications and streets 

generally aligned to the cardinal directions and exhibiting right 

angles. Specific proportions in the dimensions of major 

structures have also been pointed out. All this implies a sound knowledge of basic 

                                                      
* The author gratefully acknowledges valuable suggestions for improvement received from Dr. M.D. 

Srinivas. 

How much  knowledge 
of geometry would you 
need to plan a city? 
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geometric principles and an ability to measure angles, which the discovery of a few 

cylindrical compasses made of shell, with slits cut every 45°, has confirmed. Besides, for 

trading purposes the Harappans developed a standardized system of weights in which, 

initially, each weight was double the preceding one, then, 10, 100 or 1,000 times the value 

of a smaller weight. This shows that the Harappans could not only multiply a quantity by 

such factors, but also had an inclination for a decimal system of multiples. However, 

there is no agreement among scholars regarding the numeral system used by Harappans. 

 
A few Harappan weights made of chert, from Dholavira, Gujarat (Courtesy: ASI) 

 There is no scholarly consensus on the dates of the four Vedas, India’s most ancient 

texts, except that they are over 3,000 years old at the very least. We find in them 

frequent mentions of numbers by name, in particular multiples of tens, hundreds and 

thousands, all the way to a million millions in the Yajur Veda — a number called parārdha. 

(By comparison, much later, the Greeks named numbers only up to 10,000, which was a 

‘myriad’; and only in the 13th century CE would the concept of a ‘million’ be adopted in 
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Europe.) The Brāhmanas, commentaries on the Vedas, knew the four arithmetical 

operations as well as basic fractions. 

Early Historical Period 

The first Indian texts dealing explicitly with mathematics are the Śulbasūtras, dated 

between the 8th and 6th centuries BCE. They were written in Sanskrit in the highly concise 

sūtra style and were, in effect, manuals for the construction of fire altars (called citis or 

vedis) intended for specific rituals and made of bricks. The altars often had five layers of 

200 bricks each, the lowest layer symbolizing the earth, and the highest, heaven; they 

were thus symbolic representations of the universe.  

 
The first layer of one kind of śyenaciti or falcon altar described in the Śulbasūtras, made of 200 

bricks of six shapes or sizes, all of them adding up to a specified total area. 

 Because their total area needed to be carefully defined and constructed from bricks 

of specified shapes and size, complex geometrical calculations followed. The Śulbasūtras, 

for instance, are the earliest texts of geometry offering a general statement, in geometric 
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form, of the so-called Pythagoras theorem (which was in fact formulated by Euclid 

around 300 BCE). 

 
The geometrical expression of the Pythagoras theorem found in the Śulbasūtras. 

 They spelt out elaborate geometric methods to construct a square resulting from 

the addition or subtraction of two other squares, or having the same area as a given 

circle, and vice-versa — the classic problems of the squaring of a circle or the circling of a 

square (which, because of π’s transcendental nature, cannot have exact geometrical 

solutions, only approximate ones). All these procedures were purely geometrical, but led 

to interesting corollaries; for instance, √2 was given a rational approximation which is 

correct to the fifth decimal! 

What  is  meant  by 
‘transcendental’  and  why 
should  this  nature  of  π 
preclude  exact  geometrical 
solutions to the squaring of a 
circle? 
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 The Śulbasūtras also introduced a system of linear units, most of them based on 

dimensions of the human body; they were later slightly modified and became the 

traditional units used across India. The chief units were: 

 14 aṇus (grain of common millet) = 1 aṅgula (a digit) 

 12 aṅgulas = 1 prādeśa (the span of a hand, later vitasti) 

 15 aṅgulas = 1 pada (or big foot) 

 24 aṅgulas = 1 aratni (or cubit, later also hasta) 

 30 aṅgulas = 1 prakrama (or step) 

 120 aṅgulas = 1 puruṣa (or the height of a man with his arm extended over his head) 

 A few centuries later, Piṅgala’s Chandasūtras, a text on Sanskrit prosody, made use 

of a binary system to classify the metres of Vedic hymns, whose syllables may be either 

light (laghu) or heavy (guru); rules of calculation were worked out to relate all possible 

combinations of light and heavy syllables, expressed in binary notation, to numbers in 

one-to-one relationships, which of course worked both ways. In the course of those 

calculations, Piṅgala referred to the symbol for śūnya or zero. 

 About the same time, Jaina texts indulged in cosmological speculations involving 

colossal numbers, and dealt with geometry, combinations and permutations, fractions, 

square and cube powers; they were the first in India to come up with the notion of an 

unknown (yāvat-tāvat), and introduced a value of π equal to √10, which remained popular 

in India for quite a few centuries. 
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Notice  how,  in 
columns  2  to  4, 
multiples  of 
hundreds  are 
represented 
through a single 
sign. What  does 
this imply? 

 
Numerals as they appeared in early inscriptions, from the 3rd century BCE to the 1st century CE. 
Note that they do not yet follow a decimal positional system; for instance, in the first column, 

40 is written as ‘20, 20’, 60 as ‘20, 20, 20’. (Adapted from INSA) 

 With the appearance of the Brāhmī script a few centuries BCE, we come across 

India’s first numerals, on Ashoka’s edicts in particular, but as yet without any decimal 

positional value. These numerals will evolve in shape; eventually borrowed by Arabs 

scholars, they will be transmitted, with further alterations, to Europe and become our 

modern ‘Arabic’ numerals. 
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Evolution of Indian numerals, as evidenced by inscriptions. The first script, Brāhmī, was used 

by Aśoka in his Edicts; the last is an antecedent of the Devanagari script. (Adapted from J.J. 
O’Connor & E.F. Robertson) 

The Classical Period 

Together with astronomy, Indian mathematics saw its golden age during India’s classical 

period, beginning more or less with the Gupta age, i.e. from about 400 CE. (See module 

Astronomy in India for a map of Indian astronomers and mathematicians.) 

 Shortly before that period, the full-fledged place-value system of numeral notation 

— our ‘modern’ way of noting numbers, unlike non-positional systems such as those 

depicted above or Roman numbers — had been worked out, integrating zero with the 

nine numerals. It is a pity that we shall never know who conceived of it. Amongst the 

earliest known references to it is a first-century CE work by the Buddhist philosopher 

Vasumitra, and it is worked out more explicitly in the Jain cosmological work 

Lokavibhāga, written in 458 CE. Soon it was adopted across India, and later taken to 



8 

 

Europe by the Arabs. This was a major landmark in the world history of science, since it 

permitted rapid developments in mathematics. 

 
One of the first attested inscriptions (from Sankheda, Gujarat) recording a date written with 
the place-value system of numeral notation. The date (highlighted) reads 346 of a local era, 

which corresponds to 594 CE. (Adapted from Georges Ifrah) 

 About 499 CE, living near what is today Patna, Āryabhaṭa I (born 476 CE) authored 

the Āryabhaṭīya, the first extant siddhānta (or treatise) attempting a systematic review of 

the knowledge of mathematics and astronomy prevailing in his days. The text is so 

concise (just 121 verses) as to be often obscure, but between the 6th and the 16th century, 

no fewer than twelve major commentaries were authored to explicate and build upon its 

contents. It was eventually translated into Arabic about 800 CE (under the title Zīj al-

Ārjabhar), which in turn led to a Latin translation in the 13th century (in which Āryabhaṭa 

was called ‘Ardubarius’). 
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Āryabhaṭa introduced the notion of a half-chord, a substantial advance over 

Greek trigonometry, which considered the full chord of an arc of circle. 

 The mathematical content of Āryabhaṭīya ranges from a very precise table of sines 

and an equally precise value for π (3.1416, stated to be ‘approximate’) to the area of a 

triangle, the sums of finite arithmetic progressions, algorithms for the extraction of 

square and cube roots, and an elaborate algorithm called kuṭṭaka (‘pulverizing’) to solve 

indeterminate equations of the first degree with two unknowns: ax + c = by. By 

‘indeterminate’ is meant that solutions should be integers alone, which rules out direct 

algebraic methods; such equations came up in astronomical problems, for example to 

calculate a whole number of revolutions of a planet in a given number of years. 

 It is worth mentioning that despite its great contributions, the Āryabhaṭīya is not 

free of errors: its formulas for the volumes of a pyramid and a sphere were erroneous, 

and would be later corrected by Brahmagupta and Bhāskarācārya respectively. 

Why  should 
the  study  of 
the  half­chord 
of  an  arc  of 
circle  be  an 
advance  over 
that of  the  full 
chord? 
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The Classical Period, post-Āryabhaṭa 

Born in 598 CE, Brahmagupta was an imposing figure, with 

considerable achievements in mathematics. In his 

Brahmasphuta Siddhānta, he studied cyclic quadrilaterals 

(i.e., inscribed in a circle) and supplied the formula for their 

area (a formula rediscovered in 17th-century Europe): if 

ABCD has sides of lengths a, b, c, and d, and the semi-

perimeter is s = (a + b +c + d)/2, then the area is given by: 

Area ABCD = √[(s – a) (s –b) (s – c) (s – a)] 

 Brahmagupta boldly introduced the notion of negative numbers and ventured to 

define the mathematical infinite as khacheda or ‘that which is 

divided by kha’, kha being one of the many names for zero. He 

discovered the bhāvanā algorithm for integral solutions to 

second-order indeterminate equations (called varga prakriti) 

of the type Nx2 + 1 = y2. He was in many ways one of the 

founders of modern algebra, and his works were translated 

into Persian and later Latin. 

 Dated around the 7th century, the Bakhshali manuscript, 

named after the village (now in northern Pakistan) where it 

was found in 1881 in the form of 70 leaves of birch bark, gives 

us a rare insight into extensive mathematical calculation 

techniques of the times, involving in particular fractions, 

progressions, measures of time, weight and money. 

A few leaves from the Bakhshali manuscript (Courtesy: Wikipedia) 

Would  Brahmagupta’s 
definition  of  the 
mathematical  infinite 
be  acceptable  to 
modern mathematics?
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 Other brilliant mathematicians of the siddhāntic era included Bhāskara I, a 

contemporary of Brahmagupta, who did pioneering work in trigonometry (proposing a 

remarkably accurate rational approximation for the sine function), Śrīdhara and 

Mahāvīra. The last, a Jain scholar who lived in the 9th century in the court of a 

Rashtrakuta king (in today’s Karnataka), authored the first work of mathematics that 

was not as part of a text on astronomy. In it, Mahāvīra dealt with finite series, 

expansions of fractions, permutations and combinations (working out, for the first time, 

some of the standard formulas in the field), linear equations with two unknowns, 

quadratic equations, and a remarkably close approximation for the circumference of an 

ellipse, among other important results. 

 
Graph showing the high accuracy of Bhāskara I’s rational approximation for the sine function 
from 0° to 180° (in blue). The sine function (in read) had to be shifted upward by 0.05 to make 

the two curves distinguishable. (Courtesy: IFIH) 

 Bhāskara II, often known as Bhāskarācārya, lived in the 12th century. His 

Siddhāntaśiromani (literally, the ‘crest jewel of the siddhāntas’) broke new ground as 

regards cubic and biquadratic equations. He built upon Brahmagupta’s work on 

indeterminate equations to produce a still more effective algorithm, the chakravāla (or 



12 

 

‘cyclic method’); with it he showed, for instance, that the smallest integral solutions to 

61x2 + 1 = y2 are x = 226153980, y = 1766319049 (interestingly, five centuries later, the 

French mathematician Fermat offered the same equation as a challenge to some of his 

contemporaries). Bhāskarācārya also grasped the notion of integration as a limit of finite 

sums: by slicing a sphere into ever smaller rings, for instance, he was able to calculate its 

area and volume. He came close to the modern notion of derivative by discussing the 

notion of instant speed (tātkālika gati) and understood that the derivative of the sine 

function is proportional to the cosine. 

 The first part of Bhāskarācārya’s Siddhāntaśiromani is a collection of mathematical 

problems called Līlāvatī, named after an unknown lady to whom Bhāskara puts problems 

in an often poetical language. Līlāvatī became so popular with students of mathematics 

across India that four centuries later, Akbar had it translated into Persian by a court 

poet. 

The Kerala School of Mathematics 

Along with astronomy, mathematics underwent a revival in the Kerala School, which 

flourished there from the 14th to the 17th century. Its pioneer, Mādhava (c. 1340–1425), 

laid some of the foundations of calculus by working out power series expansions for the 

sine and cosine functions (the so-called Newton series), and by spelling out this 

fundamental expansion of π: 

 

 This is known as the Gregory–Leibniz series, but ought one day to be named after 

Mādhava. He went on to propose a more rapidly convergent series for π: 
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which enabled him to calculate π to 11 correct decimals. 

 Nīlakaṇṭha Somayāji (c. 1444–1545) and Jyeṣṭhadeva (c. 1500–1600) built on such 

results and considerably enriched what might be called the Indian foundations of 

calculus. The latter, for instance, worked out the binomial expansion: 

 

Features of Indian mathematics 

As elsewhere, mathematics in India arose from practical needs: constructing fire altars 

according to precise specifications, tracking the motion of planets, predicting eclipses, 

etc. But India’s approach remained essentially pragmatic: rather than developing an 

axiomatic method such as that of the Greek (famously introduced by Euclid for 

geometry), it focused on obtaining formulas and algorithms that yielded precise and 

reliable results.  

Nevertheless, Indian mathematicians did often provide logically rigorous 

justifications for their results, especially in the longer texts. Indeed, Bhāskarācārya 

states that presenting proofs (upapattis) is part of the teaching tradition, and Jyeṣṭhadeva 

devotes considerable space to them in his Yukti Bhāṣā. The shorter texts, on the other 

hand, often dispensed with the development of proofs. In the same spirit, the celebrated 

S. Ramanujan produced many important theorems but did not take time to supply proofs 

for them, leaving this for others to do! 

 Whether those specificities limited the further growth of Indian mathematics is 

open to debate. Other factors have been discussed by historians of science, such as 

historical disruptions of centres and networks of learning (especially in north India), 

limited royal patronage, or the absence of a conquering impulse (which, in Europe, did 
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fuel the growth of science and technology). Be that as it may, India’s contribution in the 

field was enormous by any standard. Through the Arabs, many Indian inputs, from the 

decimal place-value system of numeral notation to some of the foundations of algebra 

and analysis, travelled on to Europe and provided crucial ingredients to the development 

of modern mathematics. 

*** 

Match the following 

Śulbasūtras kuṭṭaka 

Āryabhaṭa  expansions of trigonometric functions 

Bhāskara I Chakravāla 

Brahmagupta Pythagoras theorem 

Bhāskara II negative numbers 

Mādhava rational approximation for the sine 

Comprehension questions 

1. Write a few sentences on the inception of mathematics in India. 

2. How would a rational approximation for the sine function be useful, when tables 

of sine were already available? 

3. The Jain mathematicians used √10 for the value of the ratio of a circle’s 

circumference to its diameter (π). Āryabhaṭa offered a value (62832/2000) which, 

he said, was ‘approximate’. Bhāskarācārya proposed 22/7 for a ‘rough 

approximation’, and 3927/1250 for a ‘good approximation’. And Mādhava’s work 

on π is summarized above. What conclusions can you draw from these various 

results? 
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4. Consider the following statement by the French mathematician Pierre Simon de 

Laplace in 1814: ‘It is to India that we owe the ingenious method of expressing 

every possible number using a set of ten symbols, each symbol having a positional 

as well as an absolute value. A profound and important idea, it now appears to us 

so simple that we fail to appreciate its true merit. But its real simplicity and the 

way it has facilitated all calculations has placed our arithmetic foremost among 

useful inventions. We will appreciate the greatness of this invention all the more 

if we remember that it eluded the genius of the two greatest men of Antiquity, 

Archimedes and Apollonius.’ Discuss this statement and its implications. Why 

does Laplace find the Indian positional system of numeral notation ‘simple’? 

Project ideas 

 Prepare a PowerPoint presentation on some of the important contributions of the 

‘siddhāntic’ period of mathematics, i.e. from Āryabhaṭa to Bhāskarācārya. 

 Prepare a PowerPoint presentation on some of the important contributions of the 

Kerala School of mathematics. 

 Using Internet resources such as the website of University of St. Andrews, Scotland 

(http://www-history.mcs.st-andrews.ac.uk/history/Indexes/Indians.html and 

http://www-history.mcs.st-andrews.ac.uk/history/Indexes/HistoryTopics.html), draw a 

timeline for Indian as well as Babylonian, Greek, Arabic and Chinese mathematics. 

 Consider the following four basic operations: 227 + 109; 128 – 77; 56 x 83; 45 ÷ 12. 

Work them out in full, but with those numbers expressed exclusively with Roman 

numerals: CCXXVII + CIX, etc. Spell out the rules involved clearly and follow them 

consistently. State your conclusions. 
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Exercises* 

 Work out the value of √2 given in the Śulbasūtras, compare to the true value and 

calculate the margin of error. 

 Āryabhaṭa I expressed the formula for the volume of a sphere thus: ‘Half the 

circumference multiplied by half the diameter is the area of a circle. That area 

multiplied by its own square root is the exact volume of a sphere’ (Āryabhaṭīya, 

2.7). Show that this works out to π3/2 r3. Mahāvīra (c. 850 CE) proposed that the 

volume of a sphere is 9/2 r3. Śrīdhara (c. 900 CE) and Āryabhaṭa II (c. 950 CE) both 

proposed 38/9 r3. Tabulate these three formulas and calculate their margins of 

error with respect to the correct formula. Add a column for Bhāskarācārya’s 

formula: ‘[The sphere’s surface] multiplied by its diameter and divided by 6’ 

(Līlāvatī 109); work it out and conclude. 

 Work out how many terms beyond 1 are required in Mādhava’s ‘rapidly 

convergent series’ given above to reach 11 correct decimals for π. Use a calculator, 

but provide an estimate of the time it would have taken you to do the calculations 

by hand — which is what Mādhava’s did! 
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 Useful references on the history of mathematics: 
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Primary Texts on Mathematics in India: A Selection 

 (All figures courtesy IFIH) 

 

White Yajur-Veda (tr. adapted from R.T.H. Griffith) 

O Agni, may these [sacrificial] bricks be my own milch cows: one, and ten, and 

ten tens, a hundred, and ten hundreds, a thousand, and ten thousand, and a 

hundred thousand, and a million, and a hundred millions, and a thousand 

millions, and a hundred thousand millions, and a million millions. May these 

bricks be my own milch cows in the world beyond and in this world. 

(Yajurveda Vājasaneyisaṃhitā, 17.2) 

Note: The Yajur-Veda is one of the four Vedas and exists in two versions (the White and 

the Black); it is dedicated to the conduct of sacrifices. Here, the priest constructs an altar 

for a fire sacrifice (Agni is the fire-god) and prays for each brick to become the 

equivalent of a milk-giving cow, a symbol of wealth (whether material or spiritual). 

*** 

Rāmāyaṇa (tr. Gita Press) 

The wise speak of a hundred thousand multiplied by hundred as a crore, 

while a lakh [100,000] of crores is called a śaṅku. A lakh of śaṅkus is known as a 

mahāśaṅku. A lakh of mahāśaṅkus is spoken of as a vṛnda in this context. A lakh 

of vṛndas is known as a mahāvṛnda. A lakh of mahāvṛndas is spoken of in this 

context as a padma. A lakh of padmas is known as a mahāpadma. A lakh of 

mahāpadmas is spoken of in this context as a kharva. A lakh of kharva is known 

as a mahākharva. A lakh of mahākharvas is called a samudra. A lakh of samudras 
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is called an ogha. A lakh of oghas is popularly known as a mahaugha. 

Surrounded according to this computation by a thousand crore and one 

hundred śaṅkus and a thousand mahāśaṅkus and likewise by a hundred vṛndas, 

even so by a thousand mahāvṛndas and a hundred padmas, in the same manner 

by a thousand mahāpadmas and a hundred kharvas, nay, by a hundred 

samudras and similarly by a hundred mahaughas and by a hundred crore 

mahaughas [of monkey warriors] as well as by the gallant Vibhīṣaṇa and his 

own ministers, Sugrīva, the ruler of monkeys, is following you for waging war 

— Sugrīva, who is [thus] surrounded by a huge army and ever endowed with 

extraordinary might and prowess. Carefully observing, O great king [Rāvaṇa], 

this army ranged like a blazing planet, a supreme effort may now be put forth 

so that your victory may be ensured and no discomfiture may follow at the 

hands of the enemies. (Yuddhakāṇda, 28.33–42) 

Note: The Rāmāyaṇa is a famous Indian epic which narrates the abduction of Sītā by the 

demon-king Rāvaṇa and the resulting war waged against him by Rāma, assisted by 

Sugrīva, the king of monkeys. In this passage, Rāvaṇa is given a description of Sugrīva’s 

army and its immense numbers of warriors as it prepares to attack Lanka. It is 

noteworthy that all numbers given are multiples of ten. The total number of warriors 

adds up to an astronomical number close to 1071, which is clearly intended to be taken 

metaphorically. 

Exercise 

 In the above extract, write out the value of each named number. What is the value 

of the highest named number? Can you justify our statement that ‘The total 

number of warriors adds up to an astronomical number close to 1071’?  

*** 
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Baudhāyana’s Śulbasūtras (tr. S.N. Sen & A.K. Bag) 

Having desired [to construct] a square, one is to take a cord of length equal to 

the [side of the] given square, make ties at both ends and mark it at its 

middle. The [east-west] line [equal to the cord] is drawn and a pole is fixed at 

its middle. The two ties [of the cord] are fixed in it [pole] and a circle is drawn 

with the mark [in the middle of the cord]. Two poles are fixed at both ends of 

the diameter [east-west line]. With one tie fastened to the eastern [pole], a 

circle is drawn with the other. A similar [circle] about the western [pole]. The 

second diameter is obtained from the points of intersection of these two 

[circles]; two poles are fixed at two ends of the diameter [thus obtained]. With 

two ties fastened to the eastern [pole] a circle is drawn with the mark. The 

same [is to be done] with respect to the southern, the western and the 

northern [poles]. The end points of intersection of these [four circles] 

produce the [required] square. (1.4) 
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Note: This extract spells out a simple method to draw a square on the ground with 

nothing more than a rope and two poles or pegs. Given the importance of the square as a 

basic shape of fire altar, such a construction was fundamental (and a few more methods 

are proposed by other Śulbasūtras authors). Baudhāyana’s method can be summarized 

through the following diagram: axis EW is a given, while axis NS is obtained from the 

intersections of two larger circles drawn from points E and W; four more circles can now 

be drawn from the resulting intersections of the two axis with a circle drawn from point 

O. The intersections of those four circles form the desired square ABCD. 

Exercise 

 With a one-metre-long rope and two pegs, replicate Baudhāyana’s method. Can 

you propose any other purely method to construct a square with the same 

apparatus? 

Baudhāyana’s Śulbasūtras (tr. S.N. Sen & A.K. Bag) 

The areas [of the squares] produced separately by the length and the breadth 

of a rectangle together equal the area [of the square] produced by the 

diagonal. This is observed in rectangles having sides 3 and 4, 12 and 5, 15 and 

8, 7 and 24, 12 and 35, 15 and 36. (1.12–13) 

Note: The first part of this extract is a geometrical statement of the so-called Pythagoras 

theorem (see a figure in the survey text). The second part lists a few of the so-called 

‘Pythagoras triplets’, i.e. triplets of integers satisfying the Pythagoras theorem, for 

instance 32 + 42 = 52, 122 + 52 = 132. (Here, of course, Baudhāyana takes the result for 

granted and omits the third term.) 
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Baudhāyana’s Śulbasūtras (tr. S.N. Sen & A.K. Bag) 

If it is desired to combine two squares of different measures, a [rectangular] 

part is cut off from the larger [square] with the side of the smaller; the 

diagonal of the cut-off [rectangular] part is the side of the combined square.  

 If it is desired to remove a square from another, a [rectangular] part is 

cut off from the larger [square] with the side of the smaller one to be 

removed; the [longer] side of the cut-off [rectangular] part is placed across so 

as to touch the opposite side; by this contact [the side] is cut off. With the cut-

off [part] the difference [of the two squares] is obtained. (2.1–2) 

Note: The Śulbasūtras deal with transformations of one geometrical figure into another 

with no change in the figure’s area: for instance, a square into a rectangle and vice-versa, 

of a rectangle into an isosceles trapezium, or a square into a circle and vice-versa (see 

next extract). Here, Baudhāyana gives a method to geometrically construct a square 

having an area the sum or difference of the areas of two given squares. 
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 The first case is illustrated in the above figure, in which an application of the 

Pythagoras theorem to triangle AEF shows that the area of the red square is equal to the 

sum of the area of square ABCD and that of the blue square. 

Exercise 

 Work out the geometrical method conveyed in the second extract above (2.2), 

which deals with subtracting the areas of two squares. Draw a figure explaining 

the process. 

Baudhāyana’s Śulbasūtras (tr. S.N. Sen & A.K. Bag) 

If it is desired to transform a square into a circle [having the same area], [a 

cord of length] half the diagonal [of the square] is stretched from the centre 

to the east [a part of it lying outside the eastern side of the square]; with one-

third [of the part lying outside] added to the remainder [of the half diagonal], 

the [required] circle is drawn. (2.9) 
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Note: The circling of a square, i.e. producing a circle having the same area as a given 

square, as well as the reverse problem (see next extract), exercised the best 

mathematical minds the world over from antiquity to medieval times. Baudhāyana’s 

above method is simple and is summarized through the above figure, in which point F is 

chosen such that FG = 1/3 GE. The resulting circle (in blue) has nearly the same area as 

the square ABCD. But how nearly? Calculations show that the resulting circle is too large 

by about 1.7%. 

Exercise 

 Justify our statement that the circle resulting from Baudhāyana’s method to circle 

a square is too large by about 1.7%. Can you propose a more accurate geometrical 

method to construct such a circle? 

Baudhāyana’s Śulbasūtras (tr. S.N. Sen & A.K. Bag) 

To transform a circle into a square, the diameter is divided into eight parts; 

one [such] part after being divided into twenty-nine parts is reduced by 

twenty-eight of them and further by the sixth [of the part left] less the eighth 

[of the sixth part]. 

 Alternatively, divide [the diameter] into fifteen parts and reduce it by 

two of them; this gives the approximate side of the square [desired]. (2.10–11) 

Note: Baudhāyana offers two different methods for the reverse problem, i.e. the 

‘quadrature (or squaring) of a circle’. If the circle’s radius is r, its diameter d and the 

desired square’s side a, the first method can be expressed as: 

ܽ ൌ
7
8 ݀ ൅

݀
8 െ ൬

28݀
8 ൈ 29 ൅

݀
8 ൈ 29 ൈ 6 െ

݀
8 ൈ 29 ൈ 6 ൈ 8൰ 
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and the second as:  

ܽ ൌ ݀ െ
2

15 ݀ ൌ
26
15  ݎ

 
 Calculations show that the resulting square is too small by about 1.7% and 4.4% 

respectively. 

Exercise 

 Work out the calculations involved in the above two methods and justify our 

statement that the resulting square is too small by about 1.7% and 4.4% 

respectively. Can you propose an approximation of the type ܽ ൌ ௠
௡

 where ,ݎ

integers m and n are both less than 25, with a within 0.2% of the ideal value? 

*** 
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Āryabhaṭa I, Āryabhaṭīya (tr. K.S. Shukla) 

225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174, 164, 154, 143, 131, 119, 106, 

93, 79, 65, 51, 37, 22 and 7 — these are the Rsine-differences [at intervals of 

225 minutes of arc] in terms of minutes of arc. (1.12) 

Note: This is a table of sine values from 3.75° to 90°, for every 3.75°. But this table is 

unusual in several respects for a 21st-century maths student: 

5. Āryabhaṭa does not consider our modern sine but, in accordance to the usage of 

his times, the sine multiplied by the radius R of a circle where the angle is 

considered (see diagram in our survey text). This is generally referred to as Rsine. 

R is given an arbitrary value, which differs from one author to another; Āryabhaṭa 

adopted 3438’ (taking 360° or 21600’ as the circle’s circumference, and dividing it 

by 2π to get 3438’). Unlike the non-dimensional sine, Rsine is a linear dimension. 

One advantage of the Rsine is that it can have high values even with small angles. 

6. The values given are incremental, that is, each value has to be added to all 

preceding ones in order to get the absolute value; for instance, the Rsine value 

given for 7° is 225’ + 224’ = 449’; for 90°, it will be the sum of all the values, i.e. 

3438’ (which is the value of R, since sin 90° = 1). 

7. Āryabhaṭa’s table was actually not expressed with numerals as above, but in a 

coded language of his own, in which each letter corresponds to a number or to a 

power of ten. The first few sine values read makhi, bhakhi, phakhi, dhakhi, etc. 

 As calculations show, Āryabhaṭa’s values are highly accurate — to within 0.02%. 
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Exercise 

 Work out in full Āryabhaṭa’s table of sines from 3.75° to 90°, comparing with the 

modern values for every angle, and the error involved. Justify our statement that 

it never exceeds 0.02%. 

Āryabhaṭa I, Āryabhaṭīya (tr. K.S. Shukla) 

Having subtracted the greatest possible cube root from the last cube place 

and then having written down the cube root of the number subtracted in the 

line of the cube root], divide the second non-cube place [standing on the right 

of the last cube place] by thrice the square of the cube root [already 

obtained]; [then] subtract from the first non-cube place [standing on the right 

of the second non-cube place] the square of the quotient multiplied by thrice 

the previous [cube root]; and [then subtract] the cube [of quotient] from the 

cube place [standing on the right of the first non-cube place] [and write down 

the quotient on the right of the previous cube root in the line of the cube 

root, and treat this as the new cube root. Repeat the process if there are still 

digits on the right]. [2.5] 

Note: Āryabhaṭa gives here an algorithm for the extraction of a cube root. We reproduce 

K.S. Shukla’s explanation (reformulated by M.S. Sriram): 
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 We consider the cube root of 17,71,561 as an example. Beginning from the units 

place, the notational places are called cube place (c), first non-cube place (n), second non-

cube place(n’), cube place (c), first non-cube place (n), second non-cube place (n’), and so 

on. The process ends and the cube root is 121. The algorithm is obviously based on the 

algebraic identity: (a + b)3 = a3 + 3a2b + 3ab2 + b3. 

Exercise 

 Following this algorithm, extract the cube root of 970,299. 

Āryabhaṭa I, Āryabhaṭīya (tr. Kim Plofker) 

Divide the distance between [the centres of] the earth and the sun, multiplied 

by [the diameter of] the earth, by the difference between [the diameters of] 

the sun and the earth. The quotient is the length of the earth’s shadow 

[measured] from the [perpendicular] diameter of the earth. (4.39) 
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Note: Āryabhaṭa gives a simple formula to calculate the length of the shadow cast by the 

earth; such a calculation is essential to the prediction of a lunar eclipse (when the moon 

passes in the cone of the earth’s shadow), its totality, duration, etc. Let d be the distance 

between the centres of the sun and the earth, s the distance from the centre of the earth 

to the tip of its shadow, DS and DE the diameters of the sun and the earth, as shown in the 

above figure. 

 Āryabhaṭa’s formula can be expressed as: 

ݏ ൌ
ாܦ݀

௦ܦ െ ாܦ
 

Exercise 

 Prove the above formula. 

*** 
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Bhāskara I, Mahābhāskarīyam (tr. K.S. Shukla) 

I briefly state the rule [for finding Rsine values] without making use of the 

Rsine differences 225 etc. [as given by Āryabhaṭa, see above]. Subtract the 

degrees of the bhuja or koṭi [lateral and vertical sides of a right-angled 

triangle, i.e. cosine or sine] from the degrees of half a circle [i.e. from 0° to 

180°]. Then multiply the remainder by the degrees of the bhuja and put down 

the result at two places. At one place subtract the result from 40,500. By one-

fourth of the remainder [thus obtained] divide the result at the other place as 

multiplied by the antyaphala [i.e. the epicyclic radius]. Thus is obtained the 

entire bāhuphala (or koṭiphala) for the Sun, Moon or the star-planets. So also 

are obtained the direct and inverse Rsines. (7.17–19) 

Note: Leaving aside the astronomical terms, we can see that Bhāskara proposes the 

following rational approximation for the Rsine: 

ܴ sin ߠ ൌ
ሺ180°ߠ4 െ ሻܴߠ

40500 െ ሺ180°ߠ െ  ሻߠ

where Ɵ is in degrees. The high accuracy of the formula is illustrated by the curve found 

in our survey text. The maximum absolute error in this range is a tiny 0.0016. The 

scholar K.S. Shukla provided a geometric ‘rationale’ for the above approximation. 

*** 

Severus Sebokht, Syria, 662 CE 

I will omit all discussion of the science of the Indians, a people not the same 

as the Syrians; of their subtle discoveries in astronomy, discoveries that are 

more ingenious than those of the Greeks and the Babylonians; and of their 
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valuable methods of calculation which surpass description. I wish only to say 

that this computation is done by means of nine signs. If those who believe, 

because they speak Greek, that they have arrived at the limits of science, 

[would read the earlier texts], they would perhaps be convinced, even if a 

little late in the day, that there are others also who know something of value. 

(From George Gheverghese Joseph, The Crest of the Peacock) 

Note: Severus Sebokht, a Nestorian bishop from Syria, wrote on geography and 

astronomy. Piqued by the arrogance of Greek scholars who thought their science was 

superior to that of other cultures, he authored this well-known praise of the Indian 

place-value system of numeral notation. It is also a useful chronological marker, since it 

shows that this system had reached the Mediterranean world by the 7th century CE. 

*** 

Brahmagupta, Brāhmasphuṭasiddhānta (tr. Kim Plofker) 

[The sum] of two positives is positive, of two negatives negative; of a positive 

and a negative [the sum] is their difference; if they are equal it is zero. The 

sum of a negative and zero is negative, [that] of a positive and zero positive, 

[and that] of two zeros zero. 

 [If] a smaller [positive] is to be subtracted from a larger positive, [the 

result] is positive; [if] a smaller negative from a larger negative, [the result] is 

negative; [if] a larger [negative or positive is to be subtracted] from a smaller 

[positive or negative, the algebraic sign of] their difference is reversed — 

negative [becomes] positive and positive negative. 
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 A negative minus zero is negative, a positive [minus zero] positive; zero 

[minus zero] is zero. When a positive is to be subtracted from a negative or a 

negative from a positive, then it is to be added. 

 The product of a negative and a positive is negative, of two negatives 

positive, and of positives positive; the product of zero and a negative, of zero 

and a positive, or of two zeros is zero.  

 A positive divided by a positive or a negative divided by a negative is 

positive; a zero divided by a zero is zero; a positive divided by a negative is 

negative; a negative divided by a positive is [also] negative.  

 A negative or a positive divided by zero has that [zero] as its divisor, or 

zero divided by a negative or a positive [has that negative or positive as its 

divisor]. The square of a negative or of a positive is positive; [the square] of 

zero is zero. That of which [the square] is the square is [its] square-root.  

 The sum [of two quantities] increased or diminished by [their] 

difference [and] divided by two is [their] mixture. The difference of [two] 

squares [of the quantities] divided by the difference [of the quantities 

themselves] is increased and diminished by the difference [and] divided by 

two; [this] is the operation of unlikes. (18.30–36) 

Note: Brahmagupta, who has sometimes been called the ‘father of Indian algebra’, lays 

down here rules for operations with negative numbers and with zero. 

Exercises 

 Express all the above rules in algebraic notation. Can you spot any rule that would 

not be accepted by modern mathematics? 
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 Remove all the supplementary phrases added by the translator within square 

brackets; will you be able to make out all meanings? This will give you a feel of the 

concise style generally adopted by scientific authors of those times (the same 

applies to Āryabhaṭa’s method for cube root extraction above). 

Brahmagupta, Brāhmasphuṭasiddhānta (tr. Kim Plofker) 

The nature of squares: 

 [Put down] twice the square-root of a given square multiplied by a 

multiplier and increased or diminished by an arbitrary [number]. The 

product of the first [pair], multiplied by the multiplier, with the product of 

the last [pair], is the last computed. 

 The sum of the thunderbolt-products is the first. The additive is equal to 

the product of the additives. The two square-roots, divided by the additive or 

the subtractive, are the additive rūpas [known quantity or constant]. (18.64–

65)  

Note: The so-called ‘square-nature’ methods are ways of solving second-degree 

indeterminate equations. Here, Brahmagupta explains how to find a solution for what is 

now commonly known as ‘Pell’s Equation’ [Nx2 + 1 = y2]; we will illustrate the procedure 

using one of his examples below, namely 83x2 + 1 = y2. The key is to find, for the given 

‘multiplier’ N, a solution (a, b) to an auxiliary equation Na2 ± k = b2 where k ≠ 1, and then 

manipulate a and b to provide a solution to the original equation. If we take our ‘given 

square’ to be 1 and multiply it by the ‘multiplier’ 83, we want to increase or diminish the 

result by some quantity to give a perfect square. E.g., 83 x 12 – 2 = 92. After we ‘put down 

twice’ the chosen roots, ቚ1 9
1 9ቚ, we take the ‘sum of the thunderbolt-products’ (apparently 

a technical term for cross-multiplication): 1 x 9 + 9 x 1 = 18. That is the ‘first’ quantity, 
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and the ‘last’ is 83 x 12 + 92 = 164. The new ‘additive’ is the square of the previous one: 

2 x 2 = 4, giving 83 x 182 + 4 = 1642. Then the desired x and y are found by dividing the 

‘first’ and ‘last’ by the previous ‘subtractive’: x = 18/2 = 9, y = 164/2 = 82. The same 

technique can also be used to form a new solution from two distinct previous solutions, 

instead of from one solution ‘put down twice.’ [This note is borrowed from the 

translator, Kim Plofker. By ‘indeterminate equation’ is meant an equation for which 

integral solutions alone are desired. This method of Brahmagupta is called the bhāvanā.] 

Exercises 

 Solve the above second-degree indeterminate equation again, carefully following 

the step-by-step instructions and comparing them with Brahmagupta’s brief 

explanation. 

 By applying the above bhāvanā, show that a set of integral solutions to 18x2 + 1 = y2 

is (4, 17).  

 One of Brahmagupta’s corollaries to his bhāvanā is that if (a, b) is a solution to 

Nx2 + 1 = y2, then (2ab, b2 + Na2) is also a solution. Give a proof for this corollary, and 

use it to produce two more sets of solutions to the above equation. 

*** 

Bhāskarācārya, Bījagaṇita (tr. adapted from S.K. Abhyankar) 

Multiply both sides [of an equation] by a known quantity equal to four times 

the coefficient of the square of the unknown; add to both sides a known 

quantity equal to the square of the [original] coefficient of the unknown: then 

[extract] the root. (116) 



36 

 

Note: Bhāskarācārya here spells out a method to solve the equation ax2 + bx = c, where it 

is tacitly assumed that the coefficients a, b and c are positive; in fact, he attributes this 

solution to Śrīdhara, an earlier mathematician whose work on algebra is lost. 

 We first multiply the above equation by 4a and then add b2 to both the sides: 

4a2x2 + 4abx + b2 = 4ac + b2, 

which becomes: 

(2ax + b)2 = 4ac + b2. 

Taking roots, we obtain: 

ݔ2ܽ ൅ ܾ ൌ  ඥ4ܽܿ ൅ ܾଶ, 

from which we get one of the two standard solutions (the other deriving from the 

negative root of the first member of the above equation). This strategy is extended to 

methods for solving the cubic and the biquadratic (or fourth-degree) equations. 

Bhāskarācārya, Bījagaṇita (tr. adapted from S.K. Abhyankar) 

One man says to the other, ‘If you will give me 100 rupees, I shall be twice as 

rich as you are.’ The other man says, ‘If you give me 10 rupees, I shall be six 

times as rich as you are.’ Tell me the wealth of each of them. (93) 

 A merchant started with a sum. Entering a city, he paid Rs. 10 as duty. 

After trading his amount became double. From that he spent Rs. 10 on dinner 

and left the city after paying Rs. 10 as duty. He went to two other cities; the 

same was the case in both of them. After coming back his amount had trebled. 

What was the [initial] sum? (101) 
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Note: Bhāskarācārya enjoyed mathematical brainteasers, as both his Bījagaṇita and his 

Līlāvatī testify (following the example of earlier authors, such as Mahāvīra). They usually 

involve systems of linear equations, occasionally quadratic ones. 

Exercise 

 Solve the above two brainteasers. 

Bhāskarācārya, Līlāvatī (tr. KS Patwardhan et al.) 

Arjuna became furious in the war and, in order to kill Karṇa, picked up some 

arrows. With half of the arrows, he destroyed all of Karṇa’s arrows. He killed 

all of Karṇa’s horses with four times the square root of the arrows. He 

destroyed the spear with six arrows. He used one arrow each to destroy the 

top of the chariot, the flag, and the bow of Karṇa. Finally he cut off Karṇa’s 

head with another arrow. How many arrows did Arjuna discharge? (76) 

Note: This brainteaser from Līlāvatī involves a simple quadratic equation (which assumes 

that Arjuna discharged all the arrows he had picked up). The equation is deftly woven 

into a famous episode of the Mahābhārata war. 

A king had a beautiful palace with eight doors. Skilled engineers had 

constructed four open squares which were highly polished and huge. In order 

to get fresh air, 1 door, 2 doors, 3 doors, ... are opened. How many different 

types of breeze arrangements are possible? 

 How many kinds of relishes can be made by using 1, 2, 3, 4, 5 or 6 types 

from sweet, bitter, astringent, sour, salty and hot substances? (122) 

Note: These two examples involve standard combinatorics. 
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Exercise 

 Solve the above three brainteasers. 

*** 

Jyeṣṭhadeva, Gaṇita-Yukti-Bhāṣā (tr. K.V. Sarma) 

Now, the method to ascertain two numbers if any two of the following five, 

viz., the sum, difference, product, sum of squares, and difference of squares of 

the two numbers, are known. 

 Qn. 1. Here, if the difference of two numbers is added to their sum, the 

result obtained will be twice the bigger number. Then, if the difference is 

subtracted from the sum, the result obtained will be twice the smaller 

number. Then, when the two results, as obtained above, are halved, the two 

numbers, respectively, will result.  

 Qn. 2. Now, to ascertain the numbers when their sum and product are 

known: Here, in accordance with the rationale explained earlier, if four times 

the product is subtracted from the square of the sum, and the root of the 

result found, it will be the difference between the numbers. Using this [and 

the sum of the numbers], the two numbers can be got as explained above.  

 Qn. 3. Now, [given] the sum and the sum of the squares [of the 

numbers]: There, when the square of the sum is subtracted from twice the 

sum of the squares and the root of the result found, it will be the difference 

between the numbers. 
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 Qn. 4. Then, when the difference between the squares is divided by the 

sum [of the numbers], the result will be the difference between the numbers, 

as per the rationale explained earlier.  

 Qn. 5. Then, [given] the difference and the product of the numbers: 

There, if the product is multiplied by four and the square of the difference 

added and the root of the result found, it will be the sum of the numbers.  

 Qn. 6. Then, given the difference and the sum of squares: When the 

square of the difference is subtracted from double the sum of the squares, and 

the root of the result found, it will be the sum of the numbers.  

 Qn. 7. Then, when the difference of the squares is divided by the 

difference [of the numbers], the result will be the sum of the numbers. 

 Qn. 8. Then, [given] the product and the sum of the squares [of the 

numbers]: Here, subtract twice the product from the sum of the squares, and 

find the root of the result. This will be the difference [between the numbers]. 

When the product is multiplied by 4 and the square of the difference added, 

the root of the result is the sum [of the numbers].  

 Qn. 9. Then, [given] the product and the difference of the squares [of the 

numbers]: Now, we obtain the squares of the two numbers. Here, the 

calculations done using the numbers can be done using the squares of the 

numbers. The distinction here would be that the results will also be in terms 

of squares. There, when the product is squared, it will be the product of the 

squares, [since] there is no difference in the result of multiplication when the 

sequence [of the steps] is altered. Hence, taking that the product and the 

difference of the squares are known, the sum of the squares can be derived by 

the same method used for calculating the sum [of two numbers] given their 
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product and difference. Here, when the square of the product is multiplied by 

four and added to the square of the difference in the squares, the root of the 

result will be the sum of the squares. Then placing this sum of the squares in 

two places, add to one the difference of the squares and subtract it from the 

other. Then divide both by 2. The results will be the squares of the two 

numbers.  

 Qn. 10. Then, the tenth [question] is when the sum of the squares and 

the difference of the squares are known. This too has been answered above. 

 These are the ten questions. These have been stated here since they are 

made use of in several places. Cube roots have no use in planetary 

computation. Hence they are not stated here. Thus [have been explained] a 

way of computation.  

Note: This is chapter 2 of Jyeṣṭhadeva’s Gaṇita-Yukti-Bhāṣā, a Malayalam work of the 16th 

century, divided in two major parts, one on mathematics and the other on astronomy. 

Here Jyeṣṭhadeva lays down ten commonly used rules of algebra. 

Exercise 

 How many of these ‘ten questions’ can you express in algebraic form and prove? 
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